2,357 research outputs found
An experimental investigation of the mixing of compressible-air jets in a coaxial configuration
Turbulent mixing of compressible air in supersonic and subsonic coaxial jet flow
Flight craft Patent
Designing spacecraft for flight into space, atmospheric reentry, and landing at selected site
Combustion of hydrogen in a two-dimensional duct with step fuel injectors
An investigation of the combustion of hydrogen perpendicularly injected from step fuel injectors into a Mach 2.72, 2100 K vitiated test gas was conducted. The model simulated the flow between the center and side struts of an integrated scramjet module at Mach 7 flight and an altitude of 29 km. Parametric variation included equivalence ratio, fuel dynamic pressure ratio, and area distribution of the model. The overall area ratio of the model was held constant at 2.87. The data analysis indicated that no measurable improvement in mixing or combustion efficiency was obtained by varying the fuel dynamic pressure ratio from 0.79 to 2.45. Computations indicated approximately 80 percent of the fuel was mixed so that it could react; however, only approximately 50 percent of the mixed fuel actually reacted in two test configurations, and 74 percent in later tests where less area expansion of the flow occurred
Theory of Drop Formation
We consider the motion of an axisymmetric column of Navier-Stokes fluid with
a free surface. Due to surface tension, the thickness of the fluid neck goes to
zero in finite time. After the singularity, the fluid consists of two halves,
which constitute a unique continuation of the Navier-Stokes equation through
the singular point. We calculate the asymptotic solutions of the Navier-Stokes
equation, both before and after the singularity. The solutions have scaling
form, characterized by universal exponents as well as universal scaling
functions, which we compute without adjustable parameters
The Explicit-Implicit-Null method:Removing the numerical instability of PDEs
International audienceno abstrac
Analytic study of the urn model for separation of sand
We present an analytic study of the urn model for separation of sand recently
introduced by Lipowski and Droz (Phys. Rev. E 65, 031307 (2002)). We solve
analytically the master equation and the first-passage problem. The analytic
results confirm the numerical results obtained by Lipowski and Droz. We find
that the stationary probability distribution and the shortest one among the
characteristic times are governed by the same free energy. We also analytically
derive the form of the critical probability distribution on the critical line,
which supports their results obtained by numerically calculating Binder
cumulants (cond-mat/0201472).Comment: 6 pages including 3 figures, RevTe
- …