9,988 research outputs found

    Surface States of the Topological Insulator Bi_{1-x}Sb_x

    Full text link
    We study the electronic surface states of the semiconducting alloy BiSb. Using a phenomenological tight binding model we show that the Fermi surface of the 111 surface states encloses an odd number of time reversal invariant momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a strong topological insulator. We then develop general arguments which show that spatial symmetries lead to additional topological structure, and further constrain the surface band structure. Inversion symmetric crystals have 8 Z_2 "parity invariants", which include the 4 Z_2 invariants due to time reversal. The extra invariants determine the "surface fermion parity", which specifies which surface TRIM are enclosed by an odd number of electron or hole pockets. We provide a simple proof of this result, which provides a direct link between the surface states and the bulk parity eigenvalues. We then make specific predictions for the surface state structure for several faces of BiSb. We next show that mirror invariant band structures are characterized by an integer "mirror Chern number", n_M. The sign of n_M in the topological insulator phase of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value of \eta predicted by the tight binding model for Bi disagrees with the value predicted by a more fundamental pseudopotential calculation. This explains a subtle disagreement between our tight binding surface state calculation and previous first principles calculations on Bi. This suggests that the tight binding parameters in the Liu Allen model of Bi need to be reconsidered. Implications for existing and future ARPES experiments and spin polarized ARPES experiments will be discussed.Comment: 15 pages, 7 figure

    Choosing a basis that eliminates spurious solutions in k.p theory

    Full text link
    A small change of basis in k.p theory yields a Kane-like Hamiltonian for the conduction and valence bands of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective masses. The theory is shown to work in superlattices by direct comparison with first-principles density-functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting procedures used in k.p theory is also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia

    Higgs Boson Decays to tau-pairs in the s-channel at a Muon Collider

    Full text link
    We study the observability of the \tautau decay mode of a Higgs boson produced in the ss-channel at a muon collider. We find that the spin correlations of the \tautau in τπντ,ρντ\tau\to \pi\nu_{\tau}, \rho\nu_{\tau} decays are discriminative between the Higgs boson signal and the Standard Model background. Observation of the predicted distinctive distribution can confirm the spin-0 nature of the Higgs resonance. The relative coupling strength of the Higgs boson to bb and τ\tau can also be experimentally determined.Comment: to appear in PL

    High-Field Electrical Transport in Single-Wall Carbon Nanotubes

    Full text link
    Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure

    Is there a renormalization of the 1D conductance in Luttinger Liquid model?

    Full text link
    Properties of 1D transport strongly depend on the proper choice of boundary conditions. It has been frequently stated that the Luttinger Liquid (LL) conductance is renormalized by the interaction as ge2hg \frac{e^2} {h} . To contest this result I develop a model of 1D LL wire with the interaction switching off at the infinities. Its solution shows that there is no renormalization of the universal conductance while the electrons have a free behavior in the source and drain reservoirs.Comment: 5 pages, RevTex 2.0, attempted repair of tex error

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Statistical mechanics of the vacuum

    Full text link
    The vacuum is full of virtual particles which exist for short moments of time. In this paper we construct a chaotic model of vacuum fluctuations associated with a fundamental entropic field that generates an arrow of time. The dynamics can be physically interpreted in terms of fluctuating virtual momenta. This model leads to a generalized statistical mechanics that distinguishes fundamental constants of nature.Comment: 17 pages, 1 figure. Replaced by final version to appear in Mod. Phys. Lett. B. Conclusion extended, some further references adde

    Determining the regimes of cold and warm inflation in the susy hybrid model

    Full text link
    The SUSY hybrid inflation model is found to dissipate radiation during the inflationary period. Analysis is made of parameter regimes in which these dissipative effects are significant. The scalar spectral index, its running, and the tensor-scalar ratio are computed in the entire parameter range of the model. A clear prediction for strong dissipative warm inflation is found for n_S-1 \simeq 0.98 and a low tensor-scalar ratio much below 10^{-6}. The strong dissipative warm inflation regime also is found to have no \eta-problem and with the field amplitude much below the Planck scale. As will be discussed, this has important theoretical implications in permitting a much wider variety of SUGRA extensions to the basic model.Comment: paragraph added at the end of section V; references added; accepted for publication in Phys. Rev.

    Tunneling and Quantum Noise in 1-D Luttinger Liquids

    Full text link
    We study non-equilibrium noise in the transmission current through barriers in 1-D Luttinger liquids and in the tunneling current between edges of fractional quantum Hall liquids. The distribution of tunneling events through narrow barriers can be described by a Coulomb gas lying in the time axis along a Keldysh (or non-equilibrium) contour. The charges tend to reorganize as a dipole gas, which we use to describe the tunneling statistics. Intra-dipole correlations contribute to the high-frequency ``Josephson'' noise, which has an algebraic singularity at ω=eV/\omega=e^*V/\hbar, whereas inter-dipole correlations are responsible for the low-frequency noise. Inter-dipole interactions give a 1/t21/t^2 correlation between the tunneling events that results in a ω|\omega| singularity in the noise spectrum. We present a diagrammatic technique to calculate the correlations in perturbation theory, and show that contributions from terms of order higher than the dipole-dipole interaction should only affect the strength of the ω|\omega| singularity, but its form should remain ω\sim |\omega| to all orders in perturbation theory.Comment: RevTex, 9 figures available upon request, cond-mat/yymmnn

    Elementary analysis of the special relativistic combination of velocities, Wigner rotation, and Thomas precession

    Full text link
    The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary, which will suit a first course in relativity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher level students. We then give a summary of useful results, and suggest further reading in this often obscure field.Comment: V1: 25 pages, 6 figures; V2: 22 pages, 5 figures. The revised version is shortened and the arguments streamlined. Minor changes in notation and figures. This version matches the published versio
    corecore