26 research outputs found

    State estimation of probabilistic hybrid systems with particle filters

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 117-123).Robotic and embedded systems have become increasingly pervasive in every-day applications, ranging from space probes and life support systems to autonomous rovers. In order to act robustly in the physical world, robotic systems must handle the uncertainty and partial observability inherent in most real-world situations. A convenient modeling tool for many applications, including fault diagnosis and visual tracking, are probabilistic hybrid models. In probabilistic hybrid models, the hidden state is represented with discrete and continuous state variables that evolve probabilistically. The hidden state is observed indirectly, through noisy observations. A challenge is that real-world systems are non-linear, consist of a large collection of concurrently operating components, and exhibit autonomous mode transitions, that is, discrete state transitions that depend on the continuous dynamics. In this thesis, we introduce an efficient algorithm for hybrid state estimation that combines Rao-Blackwellised particle filtering with a Gaussian representation. Conceptually, our algorithm samples trajectories traced by the discrete variables over time and, for each trajectory, estimates the continuous state with a Kalman Filter. A key insight to handling the autonomous transitions is to reuse the continuous estimates in the importance sampling step. We extended the class of autonomous transitions that can be efficiently handled by Gaussian techniques and provide a detailed empirical evaluation of the algorithm on a dynamical system with four continuous state variables. Our results indicate that our algorithm is substantially more efficient than non-RaoBlackwellised approaches. Though not as good as a k-best filter in nominal scenarios, our algorithm outperforms(cont.) a k-best filter when the correct diagnosis has too low a probability to be included in the leading set of trajectories. Through these accomplishments, the thesis lays ground work for a unifying stochastic search algorithm that shares the benefits of both methods.by Stanislav Funiak.M.Eng

    A Combined Stochastic and Greedy Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode Transitions

    Get PDF
    Robotic and embedded systems have become increasingly pervasive in applicationsranging from space probes and life support systems to robot assistants. In order to act robustly in the physical world, robotic systems must be able to detect changes in operational mode, such as faults, whose symptoms manifest themselves only in the continuous state. In such systems, the state is observed indirectly, and must therefore be estimated in a robust, memory-efficient manner from noisy observations.Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hybrid Automata (CPHA) are convenient modeling tools for such systems. In CPHA, the hidden state is represented with discrete and continuous state variables that evolve probabilistically. In this paper, we present a novel method for estimating the hybrid state of CPHA that achieves robustness by balancing greedy and stochastic search. The key insight is that stochastic and greedy search methods, taken together, are often particularly effective in practice.To accomplish this, we first develop an efficient stochastic sampling approach for CPHA based on Rao-Blackwellised Particle Filtering. We then propose a strategy for mixing stochastic and greedy search. The resulting method is able to handle three particularly challenging aspects of real-world systems, namely that they 1) exhibit autonomous mode transitions, 2) consist of a large collection of concurrently operating components, and 3) are non-linear. Autonomous mode transitions, that is, discrete transitions that depend on thecontinuous state, are particularly challenging to address, since they couple the discrete and continuous state evolution tightly. In this paper we extend the class of autonomous mode transitions that can be handled to arbitrary piecewise polynomial transition distributions.We perform an empirical comparison of the greedy and stochastic approaches to hybrid estimation, and then demonstrate the robustness of the mixed method incorporated with our HME (Hybrid Mode Estimation) capability. We show that this robustness comes at only a small performance penalty

    Robust probabilistic filtering in distributed systems

    No full text
    We present a robust distributed algorithm for approximate probabilistic inference in dynamical systems, such as sensor networks and teams of mobile robots. Using assumed density filtering, the network nodes maintain a tractable representation of the belief state in a distributed fashion. At each time step, the nodes coordinate to condition this distribution on the observations made throughout the network, and to advance this estimate to the next time step. In addition, we identify a significant challenge for probabilistic inference in dynamical systems: message losses or network partitions can cause nodes to have inconsistent beliefs about the current state of the system. We address this problem by developing distributed algorithms that guarantee that nodes will reach an informative consistent distribution when communication is re-established. We present a suite of experimental results on real-world sensor data for two real sensor network deployments: one with 25 cameras and another with 54 temperature sensors
    corecore