70 research outputs found

    占領期日本における学校評価政策 : 新制高等学校の水準保障の観点から

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 大桃 敏行, 東京大学教授 勝野 正章, 東京大学准教授 村上 祐介, 東京大学教授 小国 喜弘, 東京大学准教授 福留 東土University of Tokyo(東京大学

    Prevalence of Diabetes and Incidence of Angiopathy in Patients with Chronic Viral Liver Disease

    Get PDF
    Patients with chronic liver disease (CLD) often develops glucose intolerance. We explored the prevalence of diabetes mellitus in viral CLD, and analyzed factors profoundly affecting the diabetic angiopathies. 229 CLD patients (124 chronic hepatitis and 105 liver cirrhosis) entered the study. The diagnosis of diabetes was made with the criteria by World Health Organization. Laboratory investigation included serum asparate aminotransferase, alanine aminotransferase, albumin, fasting blood sugar, hemoglobin A1c (HbA1c), fasting immunoreactive insulin, and HOMA-R (FBS*IRI/405). The incidence of macro- and microangiopathy were also examined. Forty (17.5%) CLD patients were diagnosed diabetes, giving a significantly higher incidence than that of general cohort (5.3%) (p<0.001). Among them, 12 (30%) had the triopathy, significantly lower than that in a matched group of diabetic patients without CLD (65%) (p<0.001). Significantly increased levels of HbA1c and HOMA-R were observed in diabetic CLD with angiopathy compared with diabetic CLD without. Incidence of diabetes was increased in viral CLD patients. The rate of diabetic angiopathies in CLD, however, was relatively low, this could be explained by low coagulability in these patients. Poor control of hyperglycemia, partly due to insulin resistance, might explain the onset of angiopathy in diabetic CLD

    A Systems Analysis With “Simplified Source-Sink Model” Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments

    Get PDF
    Tomato (Solanum lycopersicum) is a model crop for studying development regulation and ripening in flesh fruits and vegetables. Supplementary light to maintain the optimal light environment can lead to the stable growth of tomatoes in greenhouses and areas without sufficient daily light integral. Technological advances in genome-wide molecular phenotyping have dramatically enhanced our understanding of metabolic shifts in the plant metabolism across tomato fruit development. However, comprehensive metabolic and transcriptional behaviors along the developmental process under supplementary light provided by light-emitting diodes (LEDs) remain to be fully elucidated. We present integrative omic approaches to identify the impact on the metabolism of a single tomato plant leaf exposed to monochromatic red LEDs of different intensities during the fruit development stage. Our special light delivery system, the “simplified source-sink model,” involves the exposure of a single leaf below the second truss to red LED light of different intensities. We evaluated fruit-size- and fruit-shape variations elicited by different light intensities. Our findings suggest that more than high-light treatment (500 μmol m-2 s-1) with the red LED light is required to accelerate fruit growth for 2 weeks after anthesis. To investigate transcriptomic and metabolomic changes in leaf- and fruit samples we used microarray-, RNA sequencing-, and gas chromatography-mass spectrometry techniques. We found that metabolic shifts in the carbohydrate metabolism and in several key pathways contributed to fruit development, including ripening and cell-wall modification. Our findings suggest that the proposed workflow aids in the identification of key metabolites in the central metabolism that respond to monochromatic red-LED treatment and contribute to increase the fruit size of tomato plants. This study expands our understanding of systems-level responses mediated by low-, appropriate-, and high levels of red light irradiation in the fruit growth of tomato plants

    Cutoff Values of Serum IgG4 and Histopathological IgG4+ Plasma Cells for Diagnosis of Patients with IgG4-Related Disease

    Get PDF
    IgG4-related disease is a new disease classification established in Japan in the 21st century. Patients with IgG4-related disease display hyper-IgG4-gammaglobulinemia, massive infiltration of IgG4+ plasma cells into tissue, and good response to glucocorticoids. Since IgG4 overexpression is also observed in other disorders, it is necessary to diagnose IgG4-related disease carefully and correctly. We therefore sought to determine cutoff values for serum IgG4 and IgG4/IgG and for IgG4+/IgG+ plasma cells in tissue diagnostic of IgG4-related disease. Patients and Methods. We retrospectively analyzed serum IgG4 concentrations and IgG4/IgG ratio and IgG4+/IgG+ plasma cell ratio in tissues of 132 patients with IgG4-related disease and 48 patients with other disorders. Result. Serum IgG4 >135  mg/dl demonstrated a sensitivity of 97.0% and a specificity of 79.6% in diagnosing IgG4-related disease, and serum IgG4/IgG ratios >8% had a sensitivity and specificity of 95.5% and 87.5%, respectively. IgG4+cell/IgG+ cell ratio in tissues >40% had a sensitivity and specificity of 94.4% and 85.7%, respectively. However, the number of IgG4+ cells was reduced in severely fibrotic parts of tissues. Conclusion. Although a recent unanimous consensus of all relevant researchers in Japan recently established the diagnostic criteria for IgG4-related disease, findings such as ours indicate that further discussion is needed

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore