12,735 research outputs found
Rigidity of Orientationally Ordered Domains of Short Chain Molecules
By molecular dynamics simulation, discovered is a strange rigid-like nature
for a hexagonally packed domain of short chain molecules. In spite of the
non-bonded short-range interaction potential (Lennard-Jones potential) among
chain molecules, the packed domain gives rise to a resultant global moment of
inertia. Accordingly, as two domains encounter obliquely, they rotate so as to
be parallel to each other keeping their overall structures as if they were
rigid bodies.Comment: 7 pages, 5 figures, and 2 table
Case of Almost Redundant Components in 3 alpha Faddeev Equations
The 3 alpha orthogonality condition model using the Pauli-forbidden bound
states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a
compact 3 alpha ground state with a large binding energy, in which a small
admixture of the redundant components can never be eliminated.Comment: Revtex V4.0, 4 pages, no figure
Fermi surfaces and anomalous transport in quasicrystals
Fermi surfaces of several quasicrystalline approximants are calculated by
means of ab-initio methods which enable direct comparison with dHvA
experiments. A criterion for anomalous metallic transport is proposed and
power-law temperature dependence of electronic conductivity is deduced from
scaling analysis of the Kubo formula.Comment: 8 pages, 7 figures. to appear in Phys. Rev.
Two- and three-alpha systems with nonlocal potential
Two body data alone cannot determine the potential uniquely, one needs
three-body data as well. A method is presented here which simultaneously fits
local or nonlocal potentials to two-body and three-body observables. The
interaction of composite particles, due to the Pauli effect and the
indistinguishability of the constituent particles, is genuinely nonlocal. As an
example, we use a Pauli-correct nonlocal fish-bone type optical model for the
potential and derive the fitting parameters such that it
reproduces the two- and three- experimental data.Comment: 16 pages, 5 figures, Inverse Scattering Conference, Aug 2007, Siofok,
Hungary New reference adde
Experimental evidence of enhancement without the influence of spin fluctuations: NMR study on LaFeAsO_{1-x}H_x under a pressure of 3.0 GPa
The electron-doped high-transition-temperature (T_c) iron-based pnictide
superconductor LaFeAsO_{1-x}H_x has a unique phase diagram: superconducting
(SC) double domes are sandwiched by antiferromagnetic phases at ambient
pressure and they turn to a single dome with a maximum T_c that exceeds 45K at
a pressure of 3.0 GPa. We studied whether spin fluctuations are involved in
increasing T_c under a pressure of 3.0 GPa by using ^{75}As nuclear magnetic
resonance (NMR) technique. The ^{75}As-NMR results for the powder samples show
that T_c increases up to 48 K without the influence of spin fluctuations. The
fact indicates that spin fluctuations are not involved in raising T_c, which
implies that other factors, such as orbital degrees of freedom, may be
important for achieving a high T_c of almost 50 K.Comment: Correponding Author: Naoki Fujiwar
Triton binding energy calculated from the SU_6 quark-model nucleon-nucleon interaction
Properties of the three-nucleon bound state are examined in the Faddeev
formalism, in which the quark-model nucleon-nucleon interaction is explicitly
incorporated to calculate the off-shell T-matrix. The most recent version,
fss2, of the Kyoto-Niigata quark-model potential yields the ground-state energy
^3H=-8.514 MeV in the 34 channel calculation, when the np interaction is used
for the nucleon-nucleon interaction. The charge root mean square radii of the
^3H and ^3He are 1.72 fm and 1.90 fm, respectively, including the finite size
correction of the nucleons. These values are the closest to the experiments
among many results obtained by detailed Faddeev calculations employing modern
realistic nucleon-nucleon interaction models.Comment: 10 pages, no figure
Detection of antiferromagnetic ordering in heavily doped LaFeAsO1-xHx pnictide superconductors using nuclear-magnetic-resonance techniques
We studied double superconducting (SC) domes in LaFeAsO1-xHx by using 75As-
and 1H-nuclear magnetic resonance techniques, and unexpectedly discovered that
a new antiferromagnetic (AF) phase follows the double SC domes on further H
doping, forming a symmetric alignment of AF and SC phases in the electronic
phase diagram. We demonstrated that the new AF ordering originates from the
nesting between electron pockets, unlike the nesting between electron and hole
pockets as seen in the majority of undoped pnictides. The new AF ordering is
derived from the features common to high-Tc pnictides: however, it has not been
reported so far for other high-Tc pnictides because of their poor electron
doping capability.Comment: 5 figures, in press in PR
- …