100 research outputs found

    On the Characteristic Difference of Neoclassical Bootstrap Current and Its Effects on MHD Equilibria between CHS Heliotron/Torsatron and CHS-qa Quasi-Axisymmetric Stellarator

    Get PDF
    The characteristic difference of neoclassical bootstrap current and its effects on MHD equilibria are described for the CHS heliotron/torsatron and the CHS-qa quasi-axisymmetric stellarator. The direction of bootstrap current strongly depends on collisionality in CHS, whereas it does not in CHS-qa because of quasi-axisymmetry. In the CHS configuration, it appears that enhanced bumpy (Bs1) and sideband components of helical ripple (By1) play an important role in reducing the magnetic geometrical factor, which is a key factor in evaluating the value of bootstrap cuffent, and determining its polarity. The bootstrap current in CHS-qa is theoretically predicted to be larger than that in CHS and produces significant effects on the resulting rotational transform and magnetic shear. In the finite B plasmas, the magnetic well becomes deeper in both CHS and CHS-qa and its region is expanded in CHS. The existence of co-flowing bootstrap current makes the magnetic well shallow in comparison with that in currentless equilibrium

    Determination of the Major Impurity Radiators in the Reheat Mode Discharges in the Compact Helical System

    Get PDF
    Radiation brightness and impurity behaviors have been studied for reheat mode discharges in the Compact Helical System (CHS) by three different types of impurity diagnostics. Total radiation power measured by a pyroelectric detector significantly reduces after entering the reheat mode, whereas the line-averaged radiation brightness measured by an absolute extreme ultraviolet (AXUV) photodiode array increases especially for a center viewing chord due to the impurity accumulation in the plasma core. One possible reason for this opposite behavior between the two bolometric detectors is the reduced sensitivity of the AXUV photodiode for lower energy photons in vacuum ultraviolet (VUV) region. This speculation is supported by temporal evolutions of VUV spectra measured by a grazing incidence spectrometer. These results demonstrate that the comparison of three impurity diagnostics would be beneficial to the determination of the major impurity radiators and a comprehensive understanding of impurity behaviors in the reheat mode discharges

    Radial Transport Characteristics of Fast Ions Due to Energetic-Particle Modes inside the Last Closed-Flux Surface in the Compact Helical System

    Get PDF
    The internal behavior of fast ions interacting with magnetohydrodynamic bursts excited by energetic ions has been experimentally investigated in the compact helical system. The resonant convective oscillation of fast ions was identified inside the last closed-flux surface during an energetic-particle mode (EPM) burst. The phase difference between the fast-ion oscillation and the EPM, indicating the coupling strength between them, remains a certain value during the EPM burst and drives an anomalous transport of fast ions

    Calibration of Setting of Mach Probes by Observing GAM Oscillations

    Get PDF
    The influence of relative displacement of Mach probe (which is placed near the top of magnetic surface) on the interference of signals is discussed. An error can arise in measured value of poloidal electric field. The Mach number perturbation at the GAM frequency has an interference from the density perturbation. The interference from the density perturbation can propagate to all of Mach number measurement. By observing the signals associated with GAM oscillations, the error in setting the probe arrays can be detected. This result can be applied to correct the positioning of probes

    Investigations of the radial propagation of blob-like structure in a non-confined electron cyclotron resonance heated plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak

    Get PDF
    A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E × B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed

    A Review -Observations of Turbulence and Structure in Magnetized Plasmas

    No full text

    Tomography for Local Plasma Turbulence Measurements

    No full text

    An Assessment of Limit Cycle Oscillation Dynamics Prior to L-H Transition

    No full text

    An Assessment of Limit Cycle Oscillation Dynamics Prior to L-H Transition

    Get PDF
    In this article, experimental observations of limit cycle oscillations (LCO) that precede L-to-H transition are discussed. Issues are: (1) the existence of zonal flows, (2) spatio-temporal evolutions of turbulence intensity, and (3) periodic generations/decays of mean radial electric field and density. The role of Reynolds stress to accelerate the LCO flow is also addressed. The propagation of changes of the density gradient and turbulence amplitude into the core is commented. Varieties in experimental reports on these issues are explained, and possible origins of different interpretations are discussed. Problem definitions for the future research for resolution are presented
    • …
    corecore