145 research outputs found
An Iterative Co-Saliency Framework for RGBD Images
As a newly emerging and significant topic in computer vision community,
co-saliency detection aims at discovering the common salient objects in
multiple related images. The existing methods often generate the co-saliency
map through a direct forward pipeline which is based on the designed cues or
initialization, but lack the refinement-cycle scheme. Moreover, they mainly
focus on RGB image and ignore the depth information for RGBD images. In this
paper, we propose an iterative RGBD co-saliency framework, which utilizes the
existing single saliency maps as the initialization, and generates the final
RGBD cosaliency map by using a refinement-cycle model. Three schemes are
employed in the proposed RGBD co-saliency framework, which include the addition
scheme, deletion scheme, and iteration scheme. The addition scheme is used to
highlight the salient regions based on intra-image depth propagation and
saliency propagation, while the deletion scheme filters the saliency regions
and removes the non-common salient regions based on interimage constraint. The
iteration scheme is proposed to obtain more homogeneous and consistent
co-saliency map. Furthermore, a novel descriptor, named depth shape prior, is
proposed in the addition scheme to introduce the depth information to enhance
identification of co-salient objects. The proposed method can effectively
exploit any existing 2D saliency model to work well in RGBD co-saliency
scenarios. The experiments on two RGBD cosaliency datasets demonstrate the
effectiveness of our proposed framework.Comment: 13 pages, 13 figures, Accepted by IEEE Transactions on Cybernetics
2017. Project URL: https://rmcong.github.io/proj_RGBD_cosal_tcyb.htm
- …