4,755 research outputs found

    Resummations in the Bloch-Nordsieck model

    Full text link
    We studied different levels of resummations of the exactly solvable Bloch-Nordsieck model in order to be able to compare the approximations with an exact result. We studied one-loop perturbation theory, 2PI resummation and Schwinger-Dyson equations truncated in a way to maintain Ward-identities. At all levels we carefully performed renormalization. We found that although the 2PI resummation does not exhibit infrared sensitivity at the mass shell (the one-loop perturbation theory does), but it is still far from the exact solution. The method of truncated Schwinger-Dyson equations, however, is exact in this model, so it provides a new way of solving the Bloch-Nordsieck model. This method can also be generalized to other, more complicated theories.Comment: 12 pages, 3 figures, revtex

    Nonlocal spectral properties of disordered alloys

    Full text link
    A general method is proposed for calculating a fully k-dependent, continuous, and causal spectral function A(k,E) within the recently introduced nonlocal version of the coherent-potential approximation (NLCPA). The method involves the combination of both periodic and anti-periodic solutions to the associated cluster problem and also leads to correct bulk quantities for small cluster sizes. We illustrate the method by investigating the Fermi surface of a two-dimensional alloy. Dramatically, we find a smeared electronic topological transition not predicted by the conventional CPA.Comment: 17 pages, 5 figures, Submitted to: J. Phys.: Condens. Matter Editorial receipt 25 May 200

    FORMATION AND CHARACTERIZATION OF NITROGEN IMPLANTED SILICON-ON-INSULATOR STRUCTURE

    Get PDF
    Silicon wafer has been implanted with 200keV14N+ ions to a dose of 0.75 x 10 18N+ /cm2 at a temperature of 600°C and has been annealed at 1300°C for 2 hours. During post-annealing rapid redistribution of the implanted nitrogen results in formation of buried polycrystalline nitride layer under the damage-free (except for few dislocations < 10⁵/cm2) single crystal silicon layer, which is characterized by n type conduction. The buried dielectric has a resistivity of approximately 10⁸ Ωcm. P channel integrated circuit transistors have been fabricated in the buried nitrid area. The measurements of these transistor devices demonstrate the suitability of nitrogen implanted SOl structure for integrated circuit application

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Full text link
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio

    Probability distributions for quantum stress tensors in four dimensions

    Full text link
    We treat the probability distributions for quadratic quantum fields, averaged with a Lorentzian test function, in four-dimensional Minkowski vacuum. These distributions share some properties with previous results in two-dimensional spacetime. Specifically, there is a lower bound at a finite negative value, but no upper bound. Thus arbitrarily large positive energy density fluctuations are possible. We are not able to give closed form expressions for the probability distribution, but rather use calculations of a finite number of moments to estimate the lower bounds, the asymptotic forms for large positive argument, and possible fits to the intermediate region. The first 65 moments are used for these purposes. All of our results are subject to the caveat that these distributions are not uniquely determined by the moments. However, we also give bounds on the cumulative distribution function that are valid for any distribution fitting these moments.We apply the asymptotic form of the electromagnetic energy density distribution to estimate the nucleation rates of black holes and of Boltzmann brains.Comment: 26 pages, 2 figure

    Ray-based calculations of backscatter in laser fusion targets

    Full text link
    A 1D, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design.Comment: 16 pages, 19 figure

    Implementation of Rare Isotopologues into Machine Learning of the Chemical Inventory of the Solar-Type Protostellar Source IRAS 16293-2422

    Full text link
    Machine learning techniques have been previously used to model and predict column densities in the TMC-1 dark molecular cloud. In interstellar sources further along the path of star formation, such as those where a protostar itself has been formed, the chemistry is known to be drastically different from that of largely quiescent dark clouds. To that end, we have tested the ability of various machine learning models to fit the column densities of the molecules detected in source B of the Class 0 protostellar binary IRAS 16293-2422. By including a simple encoding of isotopic composition in our molecular feature vectors, we also examine for the first time how well these models can replicate the isotopic ratios. Finally, we report the predicted column densities of the chemically relevant molecules that may be excellent targets for radioastronomical detection in IRAS 16293-2422B.Comment: Accepted for publication in Digital Discovery. 18 pages, 8 figures, 5 table

    Haptoglobin frequencies in Jewish communities *

    Full text link
    Haptoglobin and transferrin types have been determined by starch gel electrophoresis on blood from 929 subjects belonging to various Jewish communities. The frequency of the Hp 1 gene in 499 Ashkenazic Jews is 0.29 and does not differ significantly from the value of 0–26 found in 345 Jews of Oriental origin. The Hp 1 frequency of Ashkenazic Jews is significantly lower than that reported for the autochthonous populations of Central and Western Europe. Two small samples collected among Sephardic Jews and among the offspring of intercommunity marriages exhibit somewhat higher frequencies of the Hp 1 gene. The modified 2-1 phenotype was found in a single subject from Baghdad. There were three cases of ahaptoglobinaemia among Ashkenazic Jews and three among the Oriental groups. No ahaptoglobinaemia was discovered in a family sample of ninety-two Jews from Kurdistan among whom thalassaemia minor was common and the majority of whom were affeeted with G-6-P-D deficiency. All transferrins were of type C.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66130/1/j.1469-1809.1962.tb01307.x.pd

    Stopping of Charged Particles in a Magnetized Classical Plasma

    Get PDF
    The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented. The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained general expression for stopping power is analyzed for three cases: (i) the particle moves through a collisionless plasma in a strong homogeneous magnetic field; (ii) the fast particle moves through a magnetized collisionless plasma along the magnetic field; and (iii) the particle moves through a magnetized collisional plasma across a magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while moving across a magnetic field may be much higher than the loss in the case of motion through plasma without magnetic field.Comment: 14 pages, 3 figures, LaTe
    corecore