172 research outputs found
Treatment of hairy cell leukemia with cladribine (2-chlorodeoxyadenosine) by subcutaneous bolus injection: a phase II study
Background: To assess the activity and toxicity of 2-chlorodeoxyadenosine (cladribine, CDA) given by subcutaneous bolus injections to patients with hairy cell leukemia (HCL). Patients and methods: Sixty-two eligible patients with classic or prolymphocytic HCL (33 non-pretreated patients, 15 patients with relapse after previous treatment, and 14 patients with progressive disease during a treatment other than CDA) were treated with CDA 0.14 mg/kg/day by subcutaneous bolus injections for five consecutive days. Response status was repeatedly assessed according to the Consensus Resolution criteria. Results: Complete and partial remissions were seen in 47 (76%) and 13 (21%) patients, respectively, for a response rate of 97%. All responses were achieved with a single treatment course. Most responses occurred early (i.e. within 10 weeks) after start of CDA therapy, but response quality improved during weeks and even months after treatment completion. The median time to treatment failure for all patients was 38 months. Leukopenia was the main toxicity. Granulocyte nadir (median 0.2 × 109/l) was strongly associated with the incidence of infections (P = 0.0013). Non-specific lymphopenia occurred early after CDA treatment, and normal lymphocytes recovered slowly over several months. No significant associations were found between infections and nadir count of lymphocytes or any lymphocyte subpopulation. No opportunistic infections were observed. Conclusions: One course of CDA given by subcutaneous bolus injections is very effective in HCL. The subcutaneous administration is more convenient for patients and care providers, and has a similar toxicity profile to continuous intravenous infusion. The subcutaneous administration of CDA is a substantial improvement and should be offered to every patient with HCL requiring treatment with CD
A phase I and pharmacokinetic study of novel taxane BMS-188797 and cisplatin in patients with advanced solid tumours
This phase I study investigated the maximum tolerated dose and pharmacokinetics of a 3-weekly administration of BMS-188797, a paclitaxel derivate, at three dose levels (DLs) (80, 110 and 150 mg m−2 DL), combined with cisplatin (standard dose 75 mg m−2). In 16 patients with advanced malignancies treated, one patient experienced dose-limiting febrile neutropenia, sepsis and severe colitis at the 150 mg m−2 DL; at the 110 mg m−2 DL one episode of dose-limiting grade 3 diarrhoea/nausea occurred. Grade 3/4 haematological toxicities were leucopenia/neutropenia; grade 3 nonhaematological toxicities were neuropathy, nausea, diarrhoea and stomatits. Objective response was seen in four patients, with three complete remissions in ovarian and cervical cancer patients. Pharmacokinetics of BMS-188797 appeared linear through the 110 mg m−2, but not through the 150 mg m−2 DL. The mean±SD values for clearance, distribution volume at steady state and terminal half-life during cycle 1 were 317±60 ml min−1 m−2, 258±96 l m−2 and 30.8±7.7 h, respectively. The maximum tolerated and recommended phase II dose for BMS-188797 was 110 mg m−2 (1-h infusion, every 3 weeks) combined with cisplatin 75 mg m−2
Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography
Cancer therapy has shown terrific progress leading to important reduction of morbidity and mortality of several kinds of cancer. The therapeutic management of oncologic patients includes combinations of drugs, radiation therapy and surgery. Many of these therapies produce adverse cardiovascular complications which may negatively affect both the quality of life and the prognosis. For several years the most common noninvasive method of monitoring cardiotoxicity has been represented by radionuclide ventriculography while other tests as effort EKG and stress myocardial perfusion imaging may detect ischemic complications, and 24-hour Holter monitoring unmask suspected arrhythmias. Also biomarkers such as troponine I and T and B-type natriuretic peptide may be useful for early detection of cardiotoxicity. Today, the widely used non-invasive method of monitoring cardiotoxicity of cancer therapy is, however, represented by Doppler-echocardiography which allows to identify the main forms of cardiac complications of cancer therapy: left ventricular (systolic and diastolic) dysfunction, valve heart disease, pericarditis and pericardial effusion, carotid artery lesions. Advanced ultrasound tools, as Integrated Backscatter and Tissue Doppler, but also simple ultrasound detection of "lung comet" on the anterior and lateral chest can be helpful for early, subclinical diagnosis of cardiac involvement. Serial Doppler echocardiographic evaluation has to be encouraged in the oncologic patients, before, during and even late after therapy completion. This is crucial when using anthracyclines, which have early but, most importantly, late, cumulative cardiac toxicity. The echocardiographic monitoring appears even indispensable after radiation therapy, whose detrimental effects may appear several years after the end of irradiation
Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte
Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil
- …