283 research outputs found
Profiles of the forms and functions of self-reported aggression in three adolescent samples
In the current study, we addressed several issues related to the forms (physical and relational) and functions (reactive and proactive) of aggression in community (n = 307), voluntary residential (n = 1,917) and involuntarily detained (n = 659) adolescents (ages 11 to 19 years). Across samples, boys self-reported more physical aggression and girls reported more relational aggression, with the exception of higher levels of both forms of aggression in detained girls. Further, few boys showed high rates of relational aggression without also showing high rates of physical aggression. In contrast, it was not uncommon for girls to show high rates of relational aggression alone and these girls tended to also have high levels of problem behavior (e.g., delinquency) and mental health problems (e.g., emotional dysregulation, callous-unemotional traits). Finally, for physical aggression in both boys and girls, and for relational aggression in girls, there was a clear pattern of aggressive behavior that emerged from cluster analyses across samples. Two aggression clusters emerged with one group showing moderately high reactive aggression and a second group showing both high reactive and high proactive aggression (combined group). On measures of severity (e.g., self-reported delinquency and arrests) and etiologically important variables (e.g., emotional regulation and callous-unemotional traits), the reactive aggression group was more severe than a non-aggressive cluster but less severe than the combined aggressive cluster
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
A combined first and second order variational approach for image reconstruction
In this paper we study a variational problem in the space of functions of
bounded Hessian. Our model constitutes a straightforward higher-order extension
of the well known ROF functional (total variation minimisation) to which we add
a non-smooth second order regulariser. It combines convex functions of the
total variation and the total variation of the first derivatives. In what
follows, we prove existence and uniqueness of minimisers of the combined model
and present the numerical solution of the corresponding discretised problem by
employing the split Bregman method. The paper is furnished with applications of
our model to image denoising, deblurring as well as image inpainting. The
obtained numerical results are compared with results obtained from total
generalised variation (TGV), infimal convolution and Euler's elastica, three
other state of the art higher-order models. The numerical discussion confirms
that the proposed higher-order model competes with models of its kind in
avoiding the creation of undesirable artifacts and blocky-like structures in
the reconstructed images -- a known disadvantage of the ROF model -- while
being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure
A rotação de cultura reduz a matocompetição e aumenta o teor de clorofila e a produtividade do arroz
Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex
This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2–6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90–580 boutons per neuron); 2) pyramidal neurons in L3–L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2–4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types
WHO global research priorities for antimicrobial resistance in human health
The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR
- …