454 research outputs found

    The education skills trap in a dependent market economy. Romania's case in the 2000s

    Get PDF
    We discuss the political economic development of Romania since 1989, with a focus on the evolution of higher education (HE). First, we place this evolution in the context of demand for HE by prospective students and employers, focusing on the low demand for skills in the MNC-dominated Romanian economy. Second, we provide empirical insight on indicators of quality, enrolment, and funding as key features of the HE system. We argue that Romania has evolved into a dependent market economy entrenched in a low-skills equilibrium, and that the weakness of the HE system is a key element in this process

    Orientable â„€ \u3c inf\u3e n -distance magic labeling of the Cartesian product of many cycles

    Get PDF
    The following generalization of distance magic graphs was introduced in [2]. A directed â„€n- distance magic labeling of an oriented graph G = (V,A) of order n is a bijection ℓ: V → â„€n with the property that there is a ÎŒ ∈ â„€n (called the magic constant) such that If for a graph G there exists an orientation G such that there is a directed â„€n-distance magic labeling ℓ for G, we say that G is orientable â„€n-distance magic and the directed â„€n-distance magic labeling ℓ we call an orientable â„€n-distance magic labeling. In this paper, we find orientable â„€n- distance magic labelings of the Cartesian product of cycles. In addition, we show that even-ordered hypercubes are orientable â„€n-distance magic

    Studies of orbital parameters and pulse profile of the accreting millisecond pulsar XTE J1807-294

    Full text link
    The accreting millisecond pulsar XTE J1807-294 was observed by XMM-Newton on March 22, 2003 after its discovery on February 21, 2003 by RXTE. The source was detected in its bright phase with an observed average count rate of 33.3 cts/s in the EPIC-pn camera in the 0.5-10 keV energy band (3.7 mCrab). Using the earlier established best-fit orbital period of 40.0741+/-0.0005 minutes from RXTE observations and considering a circular binary orbit as first approximation, we derived a value of 4.8+/-0.1 lt-ms for the projected orbital radius of the binary system and an epoch of the orbital phase of MJD 52720.67415(16). The barycentric mean spin period of the pulsar was derived as 5.2459427+/-0.0000004 ms. The pulsar's spin-pulse profile showed a prominent (1.5 ms FWHM) pulse, with energy and orbital phase dependence in the amplitude and shape. The measured pulsed fraction in four energy bands was found to be 3.1+/-0.2 % (0.5-3.0 keV), 5.4+/-0.4 % (3.0-6.0 keV), 5.1+/-0.7 % (6.0-10.0 keV) and 3.7+/-0.2 % (0.5-10.0 keV), respectively. Studies of spin-profiles with orbital phase and energy showed significant increase in its pulsed fraction during the second observed orbit of the neutron star, gradually declining in the subsequent two orbits, which was associated with sudden but marginal increase in mass accretion. From our investigations of orbital parameters and estimation of other properties of this compact binary system, we conclude that XTE J1807-294 is very likely a candidate for a millisecond radio pulsar.Comment: 4 pages, 4 figures, Accepted for publication in Astronomy and Astrophysics letter

    Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments

    Get PDF
    The young water fraction Fyw, defined as the proportion of catchment outflow younger than approximately 2–3 months, can be estimated directly from the amplitudes of seasonal cycles of stable water isotopes in precipitation and streamflow. Thus, Fyw may be a useful metric in catchment inter-comparison studies that investigate landscape and hydro-climatic controls on streamflow generation. Here, we explore how Fyw varies with catchment characteristics and climatic forcing, using an extensive isotope data set from 22 small- to medium-sized (0.7–351&thinsp;km2) Swiss catchments. We find that flow-weighting the tracer concentrations in streamwater resulted in roughly 26&thinsp;% larger young water fractions compared to the corresponding unweighted values, reflecting the fact that young water fractions tend to be larger when catchments are wet and discharge is correspondingly higher. However, flow-weighted and unweighted young water fractions are strongly correlated with each other among the catchments. They also correlate with terrain, soil, and land-use indices, as well as with mean precipitation and measures of hydrologic response. Within individual catchments, young water fractions increase with discharge, indicating an increase in the proportional contribution of faster flow paths at higher flows. We present a new method to quantify the discharge sensitivity of Fyw, which we estimate as the linear slope of the relationship between the young water fraction and flow. Among the 22 catchments, discharge sensitivities of Fyw are highly variable and only weakly correlated with Fyw itself, implying that these two measures reflect catchment behaviour differently. Based on strong correlations between the discharge sensitivity of Fyw and several catchment characteristics, we suggest that low discharge sensitivities imply greater persistence in the proportions of fast and slow runoff flow paths as catchment wetness changes. In contrast, high discharge sensitivities imply the activation of different dominant flow paths during precipitation events, such as when subsurface water tables rise into more permeable layers and/or the river network expands further into the landscape.</p

    Source Matching in the SDSS and RASS: Which Galaxies are Really X-ray Sources?

    Full text link
    The current view of galaxy formation holds that all massive galaxies harbor a massive black hole at their center, but that these black holes are not always in an actively accreting phase. X-ray emission is often used to identify accreting sources, but for galaxies that are not harboring quasars (low-luminosity active galaxies), the X-ray flux may be weak, or obscured by dust. To aid in the understanding of weakly accreting black holes in the local universe, a large sample of galaxies with X-ray detections is needed. We cross-match the ROSAT All Sky Survey (RASS) with galaxies from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4) to create such a sample. Because of the high SDSS source density and large RASS positional errors, the cross-matched catalog is highly contaminated by random associations. We investigate the overlap of these surveys and provide a statistical test of the validity of RASS-SDSS galaxy cross-matches. SDSS quasars provide a test of our cross-match validation scheme, as they have a very high fraction of true RASS matches. We find that the number of true matches between the SDSS main galaxy sample and the RASS is highly dependent on the optical spectral classification of the galaxy; essentially no star-forming galaxies are detected, while more than 0.6% of narrow-line Seyferts are detected in the RASS. Also, galaxies with ambiguous optical classification have a surprisingly high RASS detection fraction. This allows us to further constrain the SEDs of low-luminosity active galaxies. Our technique is quite general, and can be applied to any cross-matching between surveys with well-understood positional errors.Comment: 10 pages, 10 figures, submitted to The Astronomical Journal on 19 June 200

    Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    Full text link
    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International Simbol-X Symposium", Paris, 2-5 december, 200

    Development of cryogenic correlated light electron microscopy methods to study mechanisms of intracellular trafficking and their relationships to the secretory pathway

    Get PDF
    The application of cryogenic electron microscopy (cryo‐EM) to the study of cellular ultrastructure provides a resolution several orders of magnitude better than light microscopy. Although this approach is increasingly applied in situ, it suffers from limitations in our ability to target imaging to specific intracellular features including the subcellular localization of specific events of interest. Cryogenic correlated light and electron microscopy (cryo‐CLEM) helps to overcome this problem by spatially locating areas of interest inside cells using fluorescence from genetically tagged or stained cellular molecules and allows for the visualization of localized fluorescently‐tagged proteins down to the level of individual organelles. Here, we attempted to study the secretory pathway in a specialized mammalian cell line, insulin‐secreting INS‐1E cells, expressing genetically‐encoded fluorophores as a model system to develop a cryo‐CLEM methodology. We discovered that there are many bright sources of autofluorescence in frozen cells. Based on our initial observations and the current understanding in the field, we hypothesized that autofluorescence from endogenous cellular substrates exhibits a broader spectrum of fluorescence than the fluorescence range of our expressed fluorescent proteins. To test this, we developed a quantitative approach to discriminate between autofluorescence and the fluorescent signal from genetically‐encoded fluorophores by measuring fluorescent intensities across different bandwidths. To validate this new methodology, we visualized multiple fluorophore‐tagged organelle markers in our experimental cell system. We found that DsRed2‐cytochrome c oxidase and chromogranin A‐GFP proteins were targeted in INS‐1E cells to mitochondria and secretory granules by cryo‐CLEM, consistent with their respective well‐established intracellular localizations. Moreover, these fluorescent signals were clearly distinguishable from autofluorescence emanating from endogenous structures including insulin crystals and multilamellar bodies. Overall, our novel cryo‐CLEM methods open the door to the study of cellular phenomena and structures with a new degree of specificity
    • 

    corecore