352 research outputs found
Transdet: a matched-filter based algorithm for transit detection - application to simulated COROT light curves
We present a matched-filter based algorithm for transit detection and its
application to simulated COROT light curves. This algorithm stems from the work
by Bord\'e, Rouan & L\'eger (2003). We describe the different steps we intend
to take to discriminate between planets and stellar companions using the three
photometric bands provided by COROT. These steps include the search for
secondary transits, the search for ellipsoidal variability, and the study of
transit chromaticity. We also discuss the performance of this approach in the
context of blind tests organized inside the COROT exoplanet consortium.Comment: 6 pages, 4 figures, in Transiting Extrasolar Planets Workshop,
meeting held in Heidelberg, 25-28 September 200
The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys
We investigate in this paper the astrophysical false-positive configuration
in exoplanet-transit surveys that involves eclipsing binaries and giant planets
which present only a secondary eclipse, as seen from the Earth. To test how an
eclipsing binary configuration can mimic a planetary transit, we generate
synthetic light curve of three examples of secondary-only eclipsing binary
systems that we fit with a circular planetary model. Then, to evaluate its
occurrence we model a population of binaries in double and triple system based
on binary statistics and occurrence. We find that 0.061% +/- 0.017% of
main-sequence binary stars are secondary-only eclipsing binaries mimicking a
planetary transit candidate down to the size of the Earth. We then evaluate the
occurrence that an occulting-only giant planet can mimic an Earth-like planet
or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant
planet that present only the secondary transit. Occulting-only giant planets
mimic planets smaller than the Earth that are in the scope of space missions
like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of
Interest can be mimicked by this new configuration of false positives,
re-evaluating the global false-positive rate of the Kepler mission from 9.4%
+/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive
scenario occurs at relatively long orbital period compared with the median
period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&
Photometric quality of Dome C for the winter 2008 from ASTEP South
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South
pole field, from the Concordia station, Dome C, Antarctica. The instrument
consists of a thermalized 10 cm refractor observing a fixed 3.88\degree x
3.88\degree field of view to perform photometry of several thousand stars at
visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the
retrieval of nearly 1600 hours of data. We derive the fraction of photometric
nights by measuring the number of detectable stars in the field. The method is
sensitive to the presence of small cirrus clouds which are invisible to the
naked eye. The fraction of night-time for which at least 50% of the stars are
detected is 74% from June to September 2008. Most of the lost time (18.5% out
of 26%) is due to periods of bad weather conditions lasting for a few days
("white outs"). Extended periods of clear weather exist. For example, between
July 10 and August 10, 2008, the total fraction of time (day+night) for which
photometric observations were possible was 60%. This confirms the very high
quality of Dome C for nearly continuous photometric observations during the
Antarctic winter
ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole
ASTEP South is the first phase of the ASTEP project (Antarctic Search for
Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k
CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88
degree field of view centered on the celestial South pole. ASTEP South became
fully functional in June 2008 and obtained 1592 hours of data during the 2008
Antarctic winter. The data are of good quality but the analysis has to account
for changes in the point spread function due to rapid ground seeing variations
and instrumental effects. The pointing direction is stable within 10 arcseconds
on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly
continuous photometry of bright stars is possible in June (the noon sky
background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes
challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on
July 20). The weather conditions are estimated from the number of stars
detected in the field. For the 2008 winter, the statistics are between 56.3 %
and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of
bad weather. Using these results in a probabilistic analysis of transit
detection, we show that the detection efficiency of transiting exoplanets in
one given field is improved at Dome C compared to a temperate site such as La
Silla. For example we estimate that a year-long campaign of 10 cm refractor
could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for
detecting 2-day period giant planets around target stars from magnitude 10 to
15. This shows the high potential of Dome C for photometry and future planet
discoveries. [Short abstract
Interpreting the yield of transit surveys: Are there groups in the known transiting planets population?
Each transiting planet discovered is characterized by 7 measurable
quantities, that may or may not be linked together (planet mass, radius,
orbital period, and star mass, radius, effective temperature, and metallicity).
Correlations between planet mass and period, surface gravity and period, planet
radius and star temperature have been previously observed among the known
transiting giant planets. Two classes of planets have been previously
identified based on their Safronov number. We use the CoRoTlux code to compare
simulated events to the sample of discovered planets and test the statistical
significance of these correlations. We first generate a stellar field with
planetary companions based on radial velocity discoveries and a planetary
evolution model, then apply a detection criterion that includes both
statistical and red noise sources. We compare the yield of our simulated survey
with the ensemble of 31 well-characterized giant transiting planets, using a
multivariate logistic analysis to assess whether the simulated distribution
matches the known transiting planets. Our multivariate analysis shows that our
simulated sample and observations are consistent to 76%. The mass vs. period
correlation for giant planets first observed with radial velocity holds with
transiting planets. Our model naturally explains the correlation between planet
surface gravity and period and the one between planet radius and stellar
effective temperature. Finally, we are also able to reproduce the previously
observed apparent bimodal distribution of Safronov numbers in 10% of our
simulated cases, although our model predicts a continuous distribution. This
shows that the evidence for the existence of two groups of planets with
different intrinsic properties is not statistically significant.Comment: 17 page
Detection of Neptune-size planetary candidates with CoRoT data. Comparison with the planet occurrence rate derived from Kepler
[Abridged] Context. The CoRoT space mission has been searching for transiting
planets since the end of December 2006. Aims. We aim to investigate the
capability of CoRoT to detect small-size transiting planets in short-period
orbits, and to compare the number of CoRoT planets with 2 \leq R_p \leq 4
Rearth with the occurrence rate of small-size planets provided by the
distribution of Kepler planetary candidates (Howard et al. 2012). Methods. We
performed a test that simulates transits of super-Earths and Neptunes in real
CoRoT light curves and searches for them blindly by using the LAM transit
detection pipeline. Results. The CoRoT detection rate of planets with radius
between 2 and 4 Rearth and orbital period P \leq 20 days is 59% (31%) around
stars brighter than r'=14.0 (15.5). By properly taking the CoRoT detection rate
for Neptune-size planets and the transit probability into account, we found
that according to the Kepler planet occurrence rate, CoRoT should have
discovered 12 \pm 2 Neptunes orbiting G and K dwarfs with P \leq 17 days in six
observational runs. This estimate must be compared with the validated Neptune
CoRoT-24b and five CoRoT planetary candidates in the considered range of
planetary radii. We thus found a disagreement with expectations from Kepler at
3 \sigma or 5 \sigma, assuming a blend fraction of 0% (six Neptunes) and 100%
(one Neptune) for these candidates. Conclusions. This underabundance of CoRoT
Neptunes with respect to Kepler may be due to several reasons. Regardless of
the origin of the disagreement, which needs to be investigated in more detail,
the noticeable deficiency of CoRoT Neptunes at short orbital periods seems to
indirectly support the general trend found in Kepler data, i.e. that the
frequency of small-size planets increases with increasing orbital periods and
decreasing planet radii.Comment: 10 pages, 7 figures. Accepted for publication in A&
SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant exoplanet candidates
The false-positive probability (FPP) of Kepler transiting candidates is a key
value for statistical studies of candidate properties. A previous investigation
of the stellar population in the Kepler field has provided an estimate for the
FPP of less than 5% for most of the candidates. We report here the results of
our radial velocity observations on a sample of 46 Kepler candidates with a
transit depth greater than 0.4%, orbital period less than 25 days and host star
brighter than Kepler magnitude 14.7. We used the SOPHIE spectrograph mounted on
the 1.93-m telescope at the Observatoire de Haute-Provence to establish the
nature of the transiting candidates. In this sample, we found five undiluted
eclipsing binaries, two brown dwarfs, six diluted eclipsing binaries, and nine
new transiting planets that complement the 11 already published planets. The
remaining 13 candidates were not followed-up or remain unsolved due to photon
noise limitation or lack of observations. From these results we computed the
FPP for Kepler close-in giant candidates to be 34.8% \pm 6.5%. We aimed to
investigate the variation of the FPP for giant candidates with the longer
orbital periods and found that it should be constant for orbital periods
between 10 and 200 days. This significant disagrees with the previous
estimates. We discuss the reasons for this discrepancy and the possible
extension of this work toward smaller planet candidates. Finally, taking the
false-positive rate into account, we refined the occurrence rate of hot
jupiters from the Kepler data.Comment: Accepted in A&A. 16 pages including 4 online material pages. 6
figures and 1 tabl
The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica
The ASTEP (Antarctica Search for Transiting ExoPlanets) program was
originally aimed at probing the quality of the Dome C, Antarctica for the
discovery and characterization of exoplanets by photometry. In the first year
of operation of the 40 cm ASTEP 400 telescope (austral winter 2010), we
targeted the known transiting planet WASP-19b in order to try to detect its
secondary transits in the visible. This is made possible by the excellent
sub-millimagnitude precision of the binned data. The WASP-19 system was
observed during 24 nights in May 2010. The photometric variability level due to
starspots is about 1.8% (peak-to-peak), in line with the SuperWASP data from
2007 (1.4%) and larger than in 2008 (0.07%). We find a rotation period of
WASP-19 of 10.7 +/- 0.5 days, in agreement with the SuperWASP determination of
10.5 +/- 0.2 days. Theoretical models show that this can only be explained if
tidal dissipation in the star is weak, i.e. the tidal dissipation factor Q'star
> 3.10^7. Separately, we find evidence for a secondary eclipse of depth 390 +/-
190 ppm with a 2.0 sigma significance, a phase consistent with a circular orbit
and a 3% false positive probability. Given the wavelength range of the
observations (420 to 950 nm), the secondary transit depth translates into a day
side brightness temperature of 2690(-220/+150) K, in line with measurements in
the z' and K bands. The day side emission observed in the visible could be due
either to thermal emission of an extremely hot day side with very little
redistribution of heat to the night side, or to direct reflection of stellar
light with a maximum geometrical albedo Ag=0.27 +/- 0.13. We also report a
low-frequency oscillation well in phase at the planet orbital period, but with
a lower-limit amplitude that could not be attributed to the planet phase alone,
and possibly contaminated with residual lightcurve trends.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 13
figure
- …