13 research outputs found

    G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    Get PDF
    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the \u3b1 subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation

    Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2

    Full text link
    Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters

    Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion from L-Cells and Its Oral Administration Increases Plasma Glucagon-Like Peptide-1 Levels in Rats

    Get PDF
    In recent years, Abscisic Acid (ABA) has been demonstrated to be involved in the regulation of glucose homeostasis in mammals as an endogenous hormone, by stimulating both insulin release and peripheral glucose uptake. In addition, ABA is released by glucose- or GLP-1-stimulated \u3b2-pancreatic cells. Here we investigated whether ABA can stimulate GLP-1 release. The human enteroendocrine L cell line hNCI-H716 was used to explore whether ABA stimulates in vitro GLP-1 secretion and/or transcription. ABA induced GLP-1 release in hNCI-H716 cells, through a cAMP/PKA-dependent mechanism. ABA also enhanced GLP-1 transcription. In addition, oral administration of ABA significantly increased plasma GLP-1 and insulin levels in rats. In conclusion, ABA can stimulate GLP-1 release: this result and the previous observation that GLP-1 stimulates ABA release from \u3b2 -cells, suggest a positive feed-back mechanism between ABA and GLP-1, regulating glucose homeostasis. Type 2 diabetes treatments targeting the GLP-1 axis by either inhibiting its rapid clearance by dipeptidyl-peptidase IV or using GLP-1 mimetics are currently used. Moreover, the development of treatments aimed at stimulating GLP-1 release from L cells has been considered as an alternative approach. Accordingly, our finding that ABA increases GLP-1 release in vitro and in vivo may suggest ABA and/or ABA analogs as potential anti-diabetic treatments

    Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation

    Full text link
    We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (>= 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth

    The Plant Hormone Abscisic Acid is a Pro-Survival Factor in Human and Murine Megakaryocytes

    Full text link
    Abscisic acid (ABA) is a phytohormone involved in pivotal physiological functions in higher plants. Recently, ABA proved to be secreted and active also in mammals, where it stimulates the activity of innate immune cells, of mesenchymal and hematopoietic stem cells and of insulin-releasing pancreatic \u3b2-cells through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). In addition to behaving as an animal hormone, ABA holds promise also as nutraceutical plant-derived compound in humans. Many biological functions of ABA in mammals are mediated by its binding to the LANCL-2 receptor protein. A putative binding of ABA to GRP78, a key regulator of endoplasmic reticulum (ER) stress, has been also proposed. Here we investigated the role of exogenous ABA in modulating thrombopoiesis, the process of platelet generation. Our results demonstrate that expression of both LANCL-2 and GRP78 is up-regulated during hematopoietic stem cell differentiation into mature megakaryocytes (Mks). Functional ABA receptors exist in mature Mks, because ABA induces intracellular Ca2+ increase ([Ca2+]i) through protein kinase A (PKA) activation and subsequent cADPR generation. In vitro exposure of human or murine hematopoietic progenitor cells to 10 \u3bcM ABA does not increase recombinant thrombopoietin (rTpo)-dependent Mk differentiation or platelet release. However, in conditions of cell stress induced by rTpo and serum deprivation, ABA stimulates, in a PKA- and cADPR-dependent fashion, the Mitogen Activated Kinase ERK 1/2, resulting in the modulation of lymphoma 2 (Bcl-2) family members, increased Mk survival and higher rates of platelets production. In conclusion, we demonstrate that ABA is a pro-survival factor for Mks in a Tpo independent manner

    Binding of abscisic acid to human LANCL2

    Full text link
    The phytohormone abscisic acid (ABA) is the central regulator of abiotic stress in plants and plays important roles during plant growth and development. In animal cells, ABA was shown to be an endogenous hormone, acting as a stress signal and stimulating cell functions involved in inflammatory responses and in insulin release. Recently, we demonstrated that Lanthionine synthetase component C-like protein 2 (LANCL2) is required for ABA binding to the plasmamembrane of granulocytes and for the activation of the signaling pathway triggered by ABA in human granulocytes and in rat insulinoma cells. In order to investigate whether ABA activates LANCL2 via direct interaction, we performed specific binding studies on human LANCL2 recombinant protein using different experimental approaches (saturation binding, scintillation proximity assays, dot blot experiments and affinity chromatography). Altogether, results indicate that human recombinant LANCL2 binds ABA directly and provide the first demonstration of ABA binding to a mammalian ABA receptor. 2011 Elsevier Inc. All rights reserve

    SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells

    Full text link
    Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer
    corecore