2,520 research outputs found

    Renormalization of an effective Light-Cone QCD-inspired theory for the Pion and other Mesons

    Get PDF
    The renormalization of the effective QCD-Hamiltonian theory for the quark-antiquark channel is performed in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The fixed point-Hamiltonian brings the renormalization conditions as well as the counterterms that render the theory finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD-Hamiltonian comes from the pion mass and radius, for a given constituent quark mass. The 1s and excited 2s states of uˉq\bar u q are calculated as a function of the mass of the quark qq being s, c or b, and compared to the experimental values.Comment: 39 pages, 10 figure

    Charm rescattering contribution in rare Bc+K+Kπ+B^+_c \to K^+ K^- \pi^+ decay

    Full text link
    Following the experimental results from LHCb on the rare decay Bc+KK+π+B^+_c \to K^-K^+\pi^+, we investigate the possibility where this process is dominated by a double charm rescattering. The BcB_c decay to double charm channels have a weak topology that is favoured in comparison with the direct production of KK+π+K^-K^+\pi^+ in the final state, suppressed by quark annihilation. The decay amplitude for Bc+KK+π+B^+_c \to K^-K^+\pi^+ with BcB_c decaying first to double charm channels is described by a charm penguin diagram, represented by charm hadronic triangle loops, which reach the final state of interest after DDˉKKˉD\bar{D}\to K\bar{K} or D+Dsπ+K D^+ D^-_s \to \pi^+ K^- transitions. We show that these processes give rise to non-resonant amplitudes with a clear signature in the Dalitz plot. In a near future, the new data from LHCb run II will be able to confirme if the main hypotheses of this work is correct and the dominant mechanism to produce K+K+πK^+K^+\pi^- from the decay of Bc+B^+_c is through charm rescattering

    Universal description of S-wave meson spectra in a renormalized light-cone QCD-inspired model

    Full text link
    A light-cone QCD-inspired model, with the mass squared operator consisting of a harmonic oscillator potential as confinement and a Dirac-delta interaction, is used to study the S-wave meson spectra. The two parameters of the harmonic potential and quark masses are fixed by masses of rho(770), rho(1450), J/psi, psi(2S), K*(892) and B*. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction. The model presents an universal and satisfactory description of both singlet and triplet states of S-wave mesons and the corresponding radial excitations.Comment: RevTeX, 17 pages, 7 eps figures, to be published in Phys. Rev.

    Spin-1 Particle in the Light-Front Approach

    Full text link
    The electromagnetic current of spin-1 composite particles does not transform properly under rotations if only the valence contribution is considered in the light-front model. In particular, the plus component of the current, evaluated only for the valence component of the wave function, in the Drell-Yan frame violates rotational symmetry, which does not allow a unique calculation of the electromagnetic form-factors. The prescription suggested by Grach and Kondratyuk [Sov. J. Nucl. Phys. 38, 198 (1984)] to extract the form factors from the plus component of the current, eliminates contributions from pair diagrams or zero modes, which if not evaluated properly cause the violation of the rotational symmetry. We address this problem in an analytical and covariant model of a spin-1 composite particle.Comment: To appear Brazilian Journal of Physics (2004), 4 pages, no figures. Use multicols.st

    Light-Front projection of spin-1 electromagnetic current and zero-modes

    Get PDF
    The issue of the contribution of zero-modes to the light-front projection of the electromagnetic current of phenomenological models of vector particles vertices is addressed in the Drell-Yan frame. Our analytical model of the Bethe-Salpeter amplitude of a spin-1 fermion-antifermion composite state gives a physically motivated light-front wave function symmetric by the exchange of the fermion and antifermion, as in the ρ\rho-meson case. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 000\to 0 one carries zero mode contributions. Our derivation generalizes to symmetric models, important for applications, the above conclusion found for a simplified non-symmetrical form of the spin-1 Bethe-Salpeter amplitude with photon-fermion point-like coupling and also for a smeared fermion-photon vertex model.Comment: Use elservier style. 14 page

    Charge confinement and Klein tunneling from doping graphene

    Full text link
    In the present work, we investigate how structural defects in graphene can change its transport properties. In particular, we show that breaking of the sublattice symmetry in a graphene monolayer overcomes the Klein effect, leading to confined states of massless Dirac fermions. Experimentally, this corresponds to chemical bonding of foreign atoms to carbon atoms, which attach themselves to preferential positions on one of the two sublattices. In addition, we consider the scattering off a tensor barrier, which describes the rotation of the honeycomb cells of a given region around an axis perpendicular to the graphene layer. We demonstrate that in this case the intervalley mixing between the Dirac points emerges, and that Klein tunneling occurs.Comment: 11 pages, 5 figure
    corecore