5 research outputs found

    Anti-Cancer Treatment Strategies in the Older Population: Time to Test More?

    Get PDF
    Aging is a well-recognized risk factor for the development of cancer. The incidence of new cancer diagnoses has increased globally given the rising senior population. Many hypotheses for this increased risk have been postulated over decades, including increased genetic and epigenetic mutations and the concept of immunosenescence. The optimal treatment strategies for this population with cancer are unclear. Older cancer patients are traditionally under-represented in clinical trials developed to set the standard of care, leading to undertreatment or increased toxicity. With this background, it is crucial to investigate new opportunities that belong to the most recent findings of an anti-cancer agent, such as immune-checkpoint inhibitors, to manage these daily clinical issues and eventually combine them with alternative administration strategies of antiblastic drugs such as metronomic chemotherapy

    Mitochondrial and glycolytic metabolic compartmentalization in diffuse large B-cell lymphoma.

    No full text
    Metabolic heterogeneity between neoplastic cells and surrounding stroma has been described in several epithelial malignancies; however, the metabolic phenotypes of neoplastic lymphocytes and neighboring stroma in diffuse large B-cell lymphoma (DLBCL) is unknown. We investigated the metabolic phenotypes of human DLBCL tumors by using immunohistochemical markers of glycolytic and mitochondrial oxidative phosphorylation (OXPHOS) metabolism. The lactate importer MCT4 is a marker of glycolysis, whereas the lactate importer MCT1 and TOMM20 are markers of OXPHOS metabolism. Staining patterns were assessed in 33 DLBCL samples as well as 18 control samples (non-neoplastic lymph nodes). TOMM20 and MCT1 were highly expressed in neoplastic lymphocytes, indicating an OXPHOS phenotype, whereas non-neoplastic lymphocytes in the control samples did not express these markers. Stromal cells in DLBCL samples strongly expressed MCT4, displaying a glycolytic phenotype, a feature not seen in stromal elements of non-neoplastic lymphatic tissue. Furthermore, the differential expression of lactate exporters (MCT4) on tumor-associated stroma and lactate importers (MCT1) on neoplastic lymphocytes support the hypothesis that neoplastic cells are metabolically linked to the stroma likely via mutually beneficial reprogramming. MCT4 is a marker of tumor-associated stroma in neoplastic tissue. Our findings suggest that disruption of neoplastic-stromal cell metabolic heterogeneity including MCT1 and MCT4 blockade should be studied to determine if it could represent a novel treatment target in DLBCL

    Liposomal delivery of a Pin1 inhibitor complexed with cyclodextrins as new therapy for high-grade serous ovarian cancer.

    No full text
    Pin1, a prolyl isomerase that sustains tumor progression, is overexpressed in different types of malignancies. Functional inactivation of Pin1 restrains tumor growth and leaves normal cells unaffected making it an ideal pharmaceutical target. Although many studies on Pin1 have focused on malignancies that are influenced by sex hormones, studies in ovarian cancer have lagged behind. Here, we show that Pin1 is an important therapeutic target in high-grade serous epithelial ovarian cancer. Knock down of Pin1 in ovarian cancer cell lines induces apoptosis and restrains tumor growth in a syngeneic mouse model. Since specific and non-covalent Pin1 inhibitors are still limited, the first liposomal formulation of a Pin1 inhibitor was designed. The drug was efficiently encapsulated in modified cyclodextrins and remotely loaded into pegylated liposomes. This liposomal formulation accumulates preferentially in the tumor and has a desirable pharmacokinetic profile. The liposomal inhibitor was able to alter Pin1 cancer driving-pathways trough the induction of proteasome-dependent degradation of Pin1 and was found to be effective in curbing ovarian tumor growth in vivo
    corecore