75 research outputs found
A Dual-Color Bioluminescence Reporter Mouse for Simultaneous in vivo Imaging of T Cell Localization and Function
Non-invasive imaging technologies to visualize the location and functionality of T cells are of great value in immunology. Here, we describe the design and generation of a transgenic mouse in which all T cells constitutively express green-emitting click-beetle luciferase (CBG99) while expression of the red-emitting firefly luciferase (PpyRE9) is induced by Nuclear Factor of Activated T cells (NFAT) such as during T cell activation, which allows multicolor bioluminescence imaging of T cell location and function. This dual-luciferase mouse, which we named TbiLuc, showed high constitutive luciferase expression in lymphoid organs such as lymph nodes and the spleen. Ex vivo purified CD8+ and CD4+ T cells both constitutively expressed luciferase, whereas B cells showed no detectable signal. We cross-bred TbiLuc mice to T cell receptor-transgenic OT-I mice to obtain luciferase-expressing naïve CD8+ T cells with defined antigen-specificity. TbiLuc*OT-I T cells showed a fully antigen-specific induction of the T cell activation-dependent luciferase. In vaccinated mice, we visualized T cell localization and activation in vaccine-draining lymph nodes with high sensitivity using two distinct luciferase substrates, D-luciferin and CycLuc1, of which the latter specifically reacts with the PpyRE9 enzyme. This dual-luciferase T cell reporter mouse can be applied in many experimental models studying the location and functional state of T cells
A Restricted Role for FcγR in the Regulation of Adaptive Immunity.
By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity
Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke
Introduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. Methods: For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland–Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. Results: The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Conclusion: Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs
Two-year clinical follow-up of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN): Design and statistical analysis plan of the extended follow-up study
Background: MR CLEAN was the first randomized trial to demonstrate the short-term clinical effectiveness of endovascular treatment in patients with acute ischemic stroke caused by large vessel occlusion in the anterior circulation. Several other trials confirmed that endovascular treatment improves clinical outcome at three months. However, limited data are available on long-term clinical outcome. We aimed to estimate the effect of endovascular treatment on functional outcome at two-year follow-up in patients with acute ischemic stroke. Secondly, we aimed to assess the effect of endovascular treatment on major vascular events and mortality during two years of follow-up. Methods: MR CLEAN is a multicenter clinical trial with randomized treatment allocation, open-label treatment, and blinded endpoint evaluation. Patients included were 18 years or older with acute ischemic stroke caused by a proven anterior proximal artery occlusion who could be treated within six hours after stroke onset. The intervention contrast was endovascular treatment and usual care versus no endovascular treatment and usual care. The current study extended the follow-up duration from three months to two years. The primary outcome is the score on the modified Rankin scale at two years. Secondary outcomes include all-cause mortality and the occurrence of major vascular events within two years of follow-up. Discussion: The results of our study provide information on the long-term clinical effectiveness of endovascular treatment, which may have implications for individual treatment decisions and estimates of cost-effectiveness. Trial registration:NTR1804. Registered on 7 May 2009; ISRCTN10888758. Registered on 24 July 2012 (main MR CLEAN trial); NTR5073. Registered on 26 February 2015 (extended follow-up study)
Emergence of surfactant-free micelles from ternary solutions
Curious effects ranging from enzyme activity to anomalies in evapn. rates that have been known for over fifty years suggest the existence and thermodn. stability of surfactant-free micelles. Only recently, joint X-ray, light and neutron scattering expts. have demonstrated that aggregates and bulk pseudo-phases coexist in presumably normal solns., in which a water insol. component is solubilized in a certain domain of concn. of a hydrotrope component like ethanol. Nevertheless, nothing is known about the mol.-level shape and structure of such aggregates. In this work we characterize mixts. of octanol, ethanol, and water by mol. dynamics simulations. For compns. in the "pre-ouzo" region (close to the single phase stability limit) we observe micelle-like aggregates that are clearly distinct from simple crit. d. fluctuations. We define an ethanol partition in the pseudo-phase from an integral of the van der Waals dispersion energy term. From this partition, octanol-rich aggregates swollen with ethanol appear with an emerging interface. Ethanol is present in the water pseudo-phase with an exponential decay similar to the one predicted by Marcelja and Radic forty years ago
Immunological Responses to Cancer Therapy
The use of immunotherapy for cancer has taken flight in the last two decades, from experimental therapy envisioned mainly by laboratory scientists to everyday treatment used by physicians to treat many patients [...
A Restricted Role for FcγR in the Regulation of Adaptive Immunity
By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity
- …