111 research outputs found

    Quantifying the mechanisms of domain gain in animal proteins.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Protein domains are protein regions that are shared among different proteins and are frequently functionally and structurally independent from the rest of the protein. Novel domain combinations have a major role in evolutionary innovation. However, the relative contributions of the different molecular mechanisms that underlie domain gains in animals are still unknown. By using animal gene phylogenies we were able to identify a set of high confidence domain gain events and by looking at their coding DNA investigate the causative mechanisms. RESULTS: Here we show that the major mechanism for gains of new domains in metazoan proteins is likely to be gene fusion through joining of exons from adjacent genes, possibly mediated by non-allelic homologous recombination. Retroposition and insertion of exons into ancestral introns through intronic recombination are, in contrast to previous expectations, only minor contributors to domain gains and have accounted for less than 1% and 10% of high confidence domain gain events, respectively. Additionally, exonization of previously non-coding regions appears to be an important mechanism for addition of disordered segments to proteins. We observe that gene duplication has preceded domain gain in at least 80% of the gain events. CONCLUSIONS: The interplay of gene duplication and domain gain demonstrates an important mechanism for fast neofunctionalization of genes.Published versio

    Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates

    Get PDF
    Novel human pseudogenes are identified that had previous functionality and their age is estimated. The rate of loss-of-function occurred uniformly

    SCN1A: bioinformatically-informed revised boundaries for promoter and enhancer regions

    Get PDF
    Pathogenic variations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene are responsible for multiple epilepsy phenotypes, including Dravet syndrome (DS), febrile seizures (FS), and genetic epilepsy with febrile seizures plus (GEFS+). Phenotypic heterogeneity is a hallmark of SCN1A-related epilepsies, the causes of which are yet to be clarified. Genetic variation in the non-coding regulatory regions of SCN1A could be one potential causal factor. However, a comprehensive understanding of the SCN1A regulatory landscape is currently lacking. Here, we summarised the current state of knowledge of SCN1A regulation, providing details of its promoter and enhancer regions. We then integrated currently available data on SCN1A promoters by extracting information related to the SCN1A locus from genome-wide repositories, and clearly defined the promoter and enhancer regions of SCN1A. Further, we explored the cellular specificity of differential SCN1A promoter usage. We also reviewed and integrated the available human brain-derived enhancer databases and mouse-derived data to provide a comprehensive computationally-developed summary of SCN1A brain-active enhancers. By querying genome-wide data repositories, extracting SCN1A-specific data and integrating the different types of independent evidence, we created a comprehensive catalogue that better defines the regulatory landscape of SCN1A, which could be used to explore the role of SCN1A regulatory regions in disease

    Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes

    Get PDF
    An analysis of ribosomal protein pseudogenes in the four mammalian genomes reveals no correlation between number of pseudogenes and mRNA abundance

    Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment

    Get PDF
    BACKGROUND: This study analyzes the predictions of a number of promoter predictors on the ENCODE regions of the human genome as part of the ENCODE Genome Annotation Assessment Project (EGASP). The systems analyzed operate on various principles and we assessed the effectiveness of different conceptual strategies used to correlate produced promoter predictions with the manually annotated 5' gene ends. RESULTS: The predictions were assessed relative to the manual HAVANA annotation of the 5' gene ends. These 5' gene ends were used as the estimated reference transcription start sites. With the maximum allowed distance for predictions of 1,000 nucleotides from the reference transcription start sites, the sensitivity of predictors was in the range 32% to 56%, while the positive predictive value was in the range 79% to 93%. The average distance mismatch of predictions from the reference transcription start sites was in the range 259 to 305 nucleotides. At the same time, using transcription start site estimates from DBTSS and H-Invitational databases as promoter predictions, we obtained a sensitivity of 58%, a positive predictive value of 92%, and an average distance from the annotated transcription start sites of 117 nucleotides. In this experiment, the best performing promoter predictors were those that combined promoter prediction with gene prediction. The main reason for this is the reduced promoter search space that resulted in smaller numbers of false positive predictions. CONCLUSION: The main finding, now supported by comprehensive data, is that the accuracy of human promoter predictors for high-throughput annotation purposes can be significantly improved if promoter prediction is combined with gene prediction. Based on the lessons learned in this experiment, we propose a framework for the preparation of the next similar promoter prediction assessment

    Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence

    Get PDF
    BACKGROUND: Defensins are important components of innate immunity to combat bacterial and viral infections, and can even elicit antitumor responses. Clusters of defensin (DEF) genes are located in a 2 Mb range of the human chromosome 8p23.1. This DEF locus, however, represents one of the regions in the euchromatic part of the final human genome sequence which contains segmental duplications, and recalcitrant gaps indicating high structural dynamics. RESULTS: We find that inter- and intraindividual genetic variations within this locus prevent a correct automatic assembly of the human reference genome (NCBI Build 34) which currently even contains misassemblies. Manual clone-by-clone alignment and gene annotation as well as repeat and SNP/haplotype analyses result in an alternative alignment significantly improving the DEF locus representation. Our assembly better reflects the experimentally verified variability of DEF gene and DEF cluster copy numbers. It contains an additional DEF cluster which we propose to reside between two already known clusters. Furthermore, manual annotation revealed a novel DEF gene and several pseudogenes expanding the hitherto known DEF repertoire. Analyses of BAC and working draft sequences of the chimpanzee indicates that its DEF region is also complex as in humans and DEF genes and a cluster are multiplied. Comparative analysis of human and chimpanzee DEF genes identified differences affecting the protein structure. Whether this might contribute to differences in disease susceptibility between man and ape remains to be solved. For the determination of individual DEF gene repertoires we provide a molecular approach based on DEF haplotypes. CONCLUSIONS: Complexity and variability seem to be essential genomic features of the human DEF locus at 8p23.1 and provides an ongoing challenge for the best possible representation in the human reference sequence. Dissection of paralogous sequence variations, duplicon SNPs ans multisite variations as well as haplotypes by sequencing based methods is the way for future studies of interindividual DEF locus variability and its disease association
    • …
    corecore