194 research outputs found
Návrh systému chlazení a topení pro mlžnou komoru
Tato diplomová práce obsahuje návrh chlazení mlžné komory. V rámci toho vznikl konstrukční návrh vizuálního prostoru mlžné komory a vypočet cyklu chladící smyčky s jeho ekonomickým zhodnocením. Tato mlžná komora je plánována postavit na fakultě strojní.ObhájenoThis thesis contains the design of the cooling system of the cloud chamber. It includes the structural design of the visual space of the cloud chamber and the calculation of the cooling loop cycle with its economic evaluation. This cloud chamber is planned to be built at the Faculty of mechanical Engineering
Mobile Application to Display Signals of Medium Voltage Overhead Lines Fault Detector
Tato diplomová práce vznikla ve spolupráci s~centrem ENET za účelem vývoje detektoru poruch na izolovaném vedení vysokého napětí.
Pro tyto účely již existuje aplikace pro platformu Windows, která přináší veškeré nevýhody a omezení standardních desktopových aplikací. Technici používají současnou aplikaci pro zobrazení detailů o měřeních a převážně k vizualizaci naměřeného signálu.
Cílem diplomové práce je navrhnout a~implementovat mobilní aplikaci určenou pro operační systém Android. Tato aplikace má za cíl umožnit uživateli pracovat s~naměřenými signály a~procházet je.This diploma thesis was created in cooperation with the ENET center in order to develop a fault detector on an isolated high voltage line.
Applications for this purpose already exist for the Windows platform. This application has the disadvantages and limitations of standard desktop applications. The technical specialists are using the application to display the details of the measurement and mainly visualizes the measured signal.
The aim of the diploma thesis is to design and implement a mobile application designed for the Android operating system. This application aims to allow the user to work with measured signals and scroll through them.460 - Katedra informatikyvelmi dobř
Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes
Astrophysical fluids may acquire non-zero electrical charge because of strong
irradiation or charge separation in a magnetic field. In this case,
electromagnetic and gravitational forces may act together and produce new
equilibrium configurations, which are different from the uncharged ones.
Following our previous studies of charged test particles and uncharged perfect
fluid tori encircling compact objects, we introduce here a simple test model of
a charged perfect fluid torus in strong gravitational and electromagnetic
fields. In contrast to ideal magnetohydrodynamic models, we consider here the
opposite limit of negligible conductivity, where the charges are tied
completely to the moving matter. This is an extreme limiting case which can
provide a useful reference against which to compare subsequent more complicated
astrophysically-motivated calculations. To clearly demonstrate the features of
our model, we construct three-dimensional axisymmetric charged toroidal
configurations around Reissner-Nordstr\"om black holes and compare them with
equivalent configurations of electrically neutral tori.Comment: 14 pages, 7 figure
Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain
Cortical projection neurons polarize and form an axon while migrating radially. Even though these dynamic processes are closely interwoven, they are regulated separately-the neurons terminate their migration when reaching their destination, the cortical plate, but continue to grow their axons. Here, we show that in rodents, the centrosome distinguishes these processes. Newly developed molecular tools modulating centrosomal microtubule nucleation combined with in vivo imaging uncovered that dysregulation of centro-somal microtubule nucleation abrogated radial migration without affecting axon formation. Tightly regu-lated centrosomal microtubule nucleation was required for periodic formation of the cytoplasmic dilation at the leading process, which is essential for radial migration. The microtubule nucleating factor g-tubulin decreased at neuronal centrosomes during the migratory phase. As distinct microtubule networks drive neuronal polarization and radial migration, this provides insight into how neuronal migratory defects occur without largely affecting axonal tracts in human developmental cortical dysgeneses, caused by mutations in g-tubulin.ISSN:0896-6273ISSN:1097-419
Elastic properties of ribosomal RNA building blocks: molecular dynamics of the GTPase-associated center rRNA
Explicit solvent molecular dynamics (MD) was used to describe the intrinsic flexibility of the helix 42–44 portion of the 23S rRNA (abbreviated as Kt-42+rGAC; kink-turn 42 and GTPase-associated center rRNA). The bottom part of this molecule consists of alternating rigid and flexible segments. The first flexible segment (Hinge1) is the highly anharmonic kink of Kt-42. The second one (Hinge2) is localized at the junction between helix 42 and helices 43/44. The rigid segments are the two arms of helix 42 flanking the kink. The whole molecule ends up with compact helices 43/44 (Head) which appear to be modestly compressed towards the subunit in the Haloarcula marismortui X-ray structure. Overall, the helix 42–44 rRNA is constructed as a sophisticated intrinsically flexible anisotropic molecular limb. The leading flexibility modes include bending at the hinges and twisting. The Head shows visible internal conformational plasticity, stemming from an intricate set of base pairing patterns including dynamical triads and tetrads. In summary, we demonstrate how rRNA building blocks with contrasting intrinsic flexibilities can form larger architectures with highly specific patterns of preferred low-energy motions and geometries
Study Protocol for the Development of a European eHealth Platform to Improve Quality of Life in Individuals With Huntington's Disease and Their Partners (HD-eHelp Study): A User-Centered Design Approach
Background: Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that affects the quality of life (QoL) of HD gene expansion carriers (HDGECs) and their partners. Although HD expertise centers have been emerging across Europe, there are still some important barriers to care provision for those affected by this rare disease, including transportation costs, geographic distance of centers, and availability/accessibility of these services in general. eHealth seems promising in overcoming these barriers, yet research on eHealth in HD is limited and fails to use telehealth services specifically designed to fit the perspectives and expectations of HDGECs and their families. In the European HD-eHelp study, we aim to capture the needs and wishes of HDGECs, partners of HDGECs, and health care providers (HCPs) in order to develop a multinational eHealth platform targeting QoL of both HDGECs and partners at home.Methods: We will employ a participatory user-centered design (UCD) approach, which focusses on an in-depth understanding of the end-users' needs and their contexts. Premanifest and manifest adult HDGECs (n = 76), partners of HDGECs (n = 76), and HCPs (n = 76) will be involved as end-users in all three phases of the research and design process: (1) Exploration and mapping of the end-users' needs, experiences and wishes; (2) Development of concepts in collaboration with end-users to ensure desirability; (3) Detailing of final prototype with quick review rounds by end-users to create a positive user-experience. This study will be conducted in the Netherlands, Germany, Czech Republic, Italy, and Ireland to develop and test a multilingual platform that is suitable in different healthcare systems and cultural contexts.Discussion: Following the principles of UCD, an innovative European eHealth platform will be developed that addresses the needs and wishes of HDGECs, partners and HCPs. This allows for high-quality, tailored care to be moved partially into the participants' home, thereby circumventing some barriers in current HD care provision. By actively involving end-users in all design decisions, the platform will be tailored to the end-users' unique requirements, which can be considered pivotal in eHealth services for a disease as complex and rare as HD
Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome
We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90–92 (H90–H92) of 23S rRNA; the 3WJ formed by H42–H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3′-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42–H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42–H97 contact
High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered
- …