3 research outputs found

    Transfer of albedo and local depth variation to photo-textures

    Get PDF
    Acquisition of displacement and albedo maps for full building façades is a difficult problem and traditionally achieved through a labor intensive artistic process. In this paper, we present a material appearance transfer method, Transfer by Analogy, designed to infer surface detail and diffuse reflectance for textured surfaces like the present in building façades. We begin by acquiring small exemplars (displacement and albedo maps), in accessible areas, where capture conditions can be controlled. We then transfer these properties to a complete phototexture constructed from reference images and captured under diffuse daylight illumination. Our approach allows super-resolution inference of albedo and displacement from information in the photo-texture. When transferring appearance from multiple exemplars to façades containing multiple materials, our approach also sidesteps the need for segmentation. We show how we use these methods to create relightable models with a high degree of texture detail, reproducing the visually rich self-shadowing effects that would normally be difficult to capture using just simple consumer equipment. Copyright © 2012 by the Association for Computing Machinery, Inc

    A perceptually validated model for surface depth hallucination

    Get PDF
    Capturing detailed surface geometry currently requires specialized equipment such as laser range scanners, which despite their high accuracy, leave gaps in the surfaces that must be reconciled with photographic capture for relighting applications. Using only a standard digital camera and a single view, we present a method for recovering models of predominantly diffuse textured surfaces that can be plausibly relit and viewed from any angle under any illumination. Our multiscale shape-from-shading technique uses diffuse-lit/flash-lit image pairs to produce an albedo map and textured height field. Using two lighting conditions enables us to subtract one from the other to estimate albedo. In the absence of a flash-lit image of a surface for which we already have a similar exemplar pair, we approximate both albedo and diffuse shading images using histogram matching. Our depth estimation is based on local visibility. Unlike other depth-from-shading approaches, all operations are performed on the diffuse shading image in image space, and we impose no constant albedo restrictions. An experimental validation shows our method works for a broad range of textured surfaces, and viewers are frequently unable to identify our results as synthetic in a randomized presentation. Furthermore, in side-by-side comparisons, subjects found a rendering of our depth map equally plausible to one generated from a laser range scan. We see this method as a significant advance in acquiring surface detail for texturing using a standard digital camera, with applications in architecture, archaeological reconstruction, games and special effects. © 2008 ACM
    corecore