691 research outputs found

    Polytopal complexes: maps, chain complexes and... necklaces

    Full text link
    The notion of polytopal map between two polytopal complexes is defined. Surprisingly, this definition is quite simple and extends naturally those of simplicial and cubical maps. It is then possible to define an induced chain map between the associated chain complexes. Finally, we use this new tool to give the first combinatorial proof of the splitting necklace theorem of Alon. The paper ends with open questions, such as the existence of Sperner's lemma for a polytopal complex or the existence of a cubical approximation theorem.Comment: Presented at the TGGT 08 Conference, May 2008, Paris. The definition of a polytopal map has been modifie

    The chromatic number of almost stable Kneser hypergraphs

    Full text link
    Let V(n,k,s)V(n,k,s) be the set of kk-subsets SS of [n][n] such that for all i,j∈Si,j\in S, we have ∣i−j∣≥s|i-j|\geq s We define almost ss-stable Kneser hypergraph KGr([n]k)s-stab∼KG^r{{[n]}\choose k}_{s{\tiny{\textup{-stab}}}}^{\displaystyle\sim} to be the rr-uniform hypergraph whose vertex set is V(n,k,s)V(n,k,s) and whose edges are the rr-uples of disjoint elements of V(n,k,s)V(n,k,s). With the help of a ZpZ_p-Tucker lemma, we prove that, for pp prime and for any n≥kpn\geq kp, the chromatic number of almost 2-stable Kneser hypergraphs KGp([n]k)2-stab∼KG^p {{[n]}\choose k}_{2{\tiny{\textup{-stab}}}}^{\displaystyle\sim} is equal to the chromatic number of the usual Kneser hypergraphs KGp([n]k)KG^p{{[n]}\choose k}, namely that it is equal to ⌈n−(k−1)pp−1⌉.\lceil\frac{n-(k-1)p}{p-1}\rceil. Defining μ(r)\mu(r) to be the number of prime divisors of rr, counted with multiplicities, this result implies that the chromatic number of almost 2μ(r)2^{\mu(r)}-stable Kneser hypergraphs KGr([n]k)2μ(r)-stab∼KG^r{{[n]}\choose k}_{2^{\mu(r)}{\tiny{\textup{-stab}}}}^{\displaystyle\sim} is equal to the chromatic number of the usual Kneser hypergraphs KGr([n]k)KG^r{{[n]}\choose k} for any n≥krn\geq kr, namely that it is equal to $\lceil\frac{n-(k-1)r}{r-1}\rceil.

    Envy-free cake division without assuming the players prefer nonempty pieces

    Full text link
    Consider nn players having preferences over the connected pieces of a cake, identified with the interval [0,1][0,1]. A classical theorem, found independently by Stromquist and by Woodall in 1980, ensures that, under mild conditions, it is possible to divide the cake into nn connected pieces and assign these pieces to the players in an envy-free manner, i.e, such that no player strictly prefers a piece that has not been assigned to her. One of these conditions, considered as crucial, is that no player is happy with an empty piece. We prove that, even if this condition is not satisfied, it is still possible to get such a division when nn is a prime number or is equal to 44. When nn is at most 33, this has been previously proved by Erel Segal-Halevi, who conjectured that the result holds for any nn. The main step in our proof is a new combinatorial lemma in topology, close to a conjecture by Segal-Halevi and which is reminiscent of the celebrated Sperner lemma: instead of restricting the labels that can appear on each face of the simplex, the lemma considers labelings that enjoy a certain symmetry on the boundary
    • …
    corecore