69 research outputs found

    Інноваційне управління новачками

    Get PDF
    Detta projekt har gått ut på att bygga en självbalanserande robot på två hjul som autonomt ska kunna köra 10-30 meter rakt fram, detektera en svart linje på marken och sedan stanna och fortsätta hålla balansen. Vi valde en cykelkonstruktion med en propellerbestyckad vinge för balansering. Två propellrar regleras av en PID-regulator med hjälp av signaler från en accelerometer och ett gyro. Framdriften sker med en DC-motor kopplad till framhjulet. En reflexionssensor används för detekteringen av den svarta linjen och hela framdrivningen styrs via IR-fjärrkontroll.The goal of this project was to build a self-balancing robot on two wheels that autonomously can drive 10-30 meters, detect a black line on the ground and then stop while still upholding balance. We chose a bike-like construction with a propeller-mounted wing for balancing. Two propellers are regulated by a PID-regulator aided by an accelerometer and a gyro. Propulsion is done by a DC-motor on the front wheel. A reflex sensor is used to detect the black line and the whole propulsion system is remote controlled by IR

    Pro-inflammatory S100A9 protein as a robust biomarker differentiating early stages of cognitive impairment in Alzheimer’s Diseased

    Get PDF
    Pro-inflammatory protein S100A9 was established as a biomarker of dementia progression and compared with others such as Aβ1−42and tau-proteins. CSF samples from 104 stringently diagnosed individuals divided into five subgroups were analyzed, including nondemented controls, stable mild cognitive impairment (SMCI), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), Alzheimer’s disease (AD), and vascular dementia (VaD) patients. ELISA, dot-blotting, and electrochemical impedance spectroscopy were used as research methods. The S100A9 and Aβ1−42 levels correlated with each other: their CSF content decreased already at the SMCI stage and declined further under MCIAD, AD, and VaD conditions. Immunohistochemical analysis also revealed involvement of both Aβ1−42 and S100A9 in the amyloid-neuroinflammatory cascade already during SMCI. Tau proteins were not yet altered in SMCI; however their contents increased during MCI-AD and AD, diagnosing later dementia stages. Thus, four biomarkers together, reflecting different underlying pathological causes, can accurately differentiate dementia progression and also distinguish AD from Va

    Alien marine species in Norway - Mapping, monitoring and assessment of vectors for introductions

    Get PDF
    Norway has the second longest coastline in the world, and it is challenging to monitor non-indigenous marine species (NIMS) along the entire shore including the Norwegian areas in the Barents Sea and along Svalbard. There is currently no national program for such monitoring, however some activity is taking place on specific species and organism groups which is presented here. Historically transport of NIMS is ballast water have been the main pathway into the Norwegian coast, but with the implementation of the Ballast Water Convention this risk is minimized. Biofouling on vessels coming into the Norwegian coast is thus considered to be the most important vector for marine introduction of new species. An analysis of the frequency and origin (last port call) for 158 000 vessel arrivals into Norwegian ports in the period 2020-2021 is presented. The results show that the Oslofjord area and the west coast is the areas with highest risk for marine introductions by vessels. Other vectors for such introductions into Norway are evaluated like the increasing amount of floating debris which can carry fouling organisms, larvae and eggs to new areas. An analysis of historical data for the established NIMS in Norway show that the southern area of Norway is most susceptible to new species. This pattern is not only dependent on the vector pressure but also reflects the temperature gradient northwards along the coast. Measures for prevention of new species to arrive and management of problematic species is also discussed.publishedVersio

    Synthetic Geopolymers for Controlled Delivery of Oxycodone: Adjustable and Nanostructured Porosity Enables Tunable and Sustained Drug Release

    Get PDF
    In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2∶1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial

    Altered Metabolic Signature in Pre-Diabetic NOD Mice

    Get PDF
    Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD) mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd) regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions

    Functional Ceramics in Biomedical Applications : On the Use of Ceramics for Controlled Drug Release and Targeted Cell Stimulation

    Full text link
    Ceramics are distinguished from metals and polymers by their inorganic nature and lack of metallic properties. They can be highly crystalline to amorphous, and their physical and chemical properties can vary widely. Ceramics can, for instance, be made to resemble the mineral phase in bone and are therefore an excellent substitute for damaged hard tissue. They can also be made porous, surface active, chemically inert, mechanically strong, optically transparent or biologically resorbable, and all these properties are of interest in the development of new materials intended for a wide variety of applications. In this thesis, the focus was on the development of different ceramics for use in the controlled release of drugs and ions. These concepts were developed to obtain improved therapeutic effects from orally administered opioid drugs, and to reduce the number of implant-related infections as well as to improve the stabilization of prosthetic implants in bone. Geopolymers were used to produce mechanically strong and chemically inert formulations intended for oral administration of opioids. The carriers were developed to allow controlled release of the drugs over several hours, in order to improve the therapeutic effect of the substances in patients with severe chronic pain. The requirement for a stable carrier is a key feature for these drugs, as the rapid release of the entire dose, due to mechanical or chemical damage to the carrier, could have lethal effects on the patient because of the narrow therapeutic window of opioids. It was found that it was possible to profoundly retard drug release and to achieve almost linear release profiles from mesoporous geopolymers when the aluminum/silicon ratio of the precursor particles and the curing temperature were tuned. Ceramic implant coatings were produced via a biomimetic mineralization process and used as carriers for various drugs or as an ion reservoir for local release at the site of the implant. The formation and characteristics of these coatings were examined before they were evaluated as potential drug carriers. It was demonstrated that these coatings were able to carry antibiotics, bisphosphonates and bone morphogenetic proteins to obtain a sustained local effect, as they were slowly released from the coatings.  Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 710</p

    How Low Can You Go? : Quantitative Risk Measures in Commodity Markets

    Full text link
    The volatility model approach to forecasting Value at Risk is complemented with modelling of Expected Shortfalls using an extreme value approach. Using three models from the GARCH family (GARCH, EGARCH and GJR-GARCH) and assuming two conditional distributions, normal Gaussian and Student t’s distribution, to make predictions of VaR, the forecasts are used as a threshold for assigning losses to the distribution tail. The Expected Shortfalls are estimated assuming that the violations of VaR follow the Generalized Pareto distribution, and the estimates are evaluated. The results indicate that the most efficient model for making predictions of VaR is the asymmetric GJR-GARCH, and that assuming the t distribution generates conservative forecasts. In conclusion there is evidence that the commodities are characterized by asymmetry and conditional normality. Since no comparison is made, the EVT approach can not be deemed to be either superior or inferior to standard approaches to Expected Shortfall modeling, although the data intensity of the method suggest that a standard approach may be preferable

    Functional Ceramics in Biomedical Applications : On the Use of Ceramics for Controlled Drug Release and Targeted Cell Stimulation

    Full text link
    Ceramics are distinguished from metals and polymers by their inorganic nature and lack of metallic properties. They can be highly crystalline to amorphous, and their physical and chemical properties can vary widely. Ceramics can, for instance, be made to resemble the mineral phase in bone and are therefore an excellent substitute for damaged hard tissue. They can also be made porous, surface active, chemically inert, mechanically strong, optically transparent or biologically resorbable, and all these properties are of interest in the development of new materials intended for a wide variety of applications. In this thesis, the focus was on the development of different ceramics for use in the controlled release of drugs and ions. These concepts were developed to obtain improved therapeutic effects from orally administered opioid drugs, and to reduce the number of implant-related infections as well as to improve the stabilization of prosthetic implants in bone. Geopolymers were used to produce mechanically strong and chemically inert formulations intended for oral administration of opioids. The carriers were developed to allow controlled release of the drugs over several hours, in order to improve the therapeutic effect of the substances in patients with severe chronic pain. The requirement for a stable carrier is a key feature for these drugs, as the rapid release of the entire dose, due to mechanical or chemical damage to the carrier, could have lethal effects on the patient because of the narrow therapeutic window of opioids. It was found that it was possible to profoundly retard drug release and to achieve almost linear release profiles from mesoporous geopolymers when the aluminum/silicon ratio of the precursor particles and the curing temperature were tuned. Ceramic implant coatings were produced via a biomimetic mineralization process and used as carriers for various drugs or as an ion reservoir for local release at the site of the implant. The formation and characteristics of these coatings were examined before they were evaluated as potential drug carriers. It was demonstrated that these coatings were able to carry antibiotics, bisphosphonates and bone morphogenetic proteins to obtain a sustained local effect, as they were slowly released from the coatings.  Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 710</p
    corecore