1,017 research outputs found

    Covariant Poisson Brackets in Geometric Field Theory

    Full text link
    We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnkovic-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.Comment: 42 page

    Maximal Subgroups of Compact Lie Groups

    Full text link
    This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Σ\Sigma-invariant subgroups of center-free connected compact simple Lie groups and (3) the classification of the Σ\Sigma-primitive subalgebras of compact simple Lie algebras, where Σ\Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.Comment: 83 pages. Final versio

    Lie Superalgebras and the Multiplet Structure of the Genetic Code II: Branching Schemes

    Full text link
    Continuing our attempt to explain the degeneracy of the genetic code using basic classical Lie superalgebras, we present the branching schemes for the typical codon representations (typical 64-dimensional irreducible representations) of basic classical Lie superalgebras and find three schemes that do reproduce the degeneracies of the standard code, based on the orthosymplectic algebra osp(5|2) and differing only in details of the symmetry breaking pattern during the last step.Comment: 34 pages, 9 tables, LaTe

    Lie Groupoids in Classical Field Theory I: Noether's Theorem

    Full text link
    In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.Comment: 38 pages, new final section adde
    corecore