10,918 research outputs found
Oxygen superstructures throughout the phase diagram of
Short-range lattice superstructures have been studied with high-energy x-ray
diffuse scattering in underdoped, optimally doped, and overdoped . A new four-unit-cell superstructure was observed in
compounds with . Its temperature, doping, and material dependence
was used to attribute its origin to short-range oxygen vacancy ordering, rather
than electronic instabilities in the layers. No significant diffuse
scattering is observed in YBaCuO. The oxygen superstructures must
be taken into account when interpreting spectral anomalies in
Formation of methyl iodide on a natural manganese oxide
This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter(NOM) and manganese oxide. Methyl iodide was formed at concentrations ≤1 μg L-1 for initial iodide concentrations ranging from 0.8 to 38.0 mg L-1. The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides
On a Conjecture of Rapoport and Zink
In their book Rapoport and Zink constructed rigid analytic period spaces
for Fontaine's filtered isocrystals, and period morphisms from PEL
moduli spaces of -divisible groups to some of these period spaces. They
conjectured the existence of an \'etale bijective morphism of
rigid analytic spaces and of a universal local system of -vector spaces on
. For Hodge-Tate weights and we construct in this article an
intrinsic Berkovich open subspace of and the universal local
system on . We conjecture that the rigid-analytic space associated with
is the maximal possible , and that is connected. We give
evidence for these conjectures and we show that for those period spaces
possessing PEL period morphisms, equals the image of the period morphism.
Then our local system is the rational Tate module of the universal
-divisible group and enjoys additional functoriality properties. We show
that only in exceptional cases equals all of and when the
Shimura group is we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will
appear in Inventiones Mathematica
Arithmetic Spacetime Geometry from String Theory
An arithmetic framework to string compactification is described. The approach
is exemplified by formulating a strategy that allows to construct geometric
compactifications from exactly solvable theories at . It is shown that the
conformal field theoretic characters can be derived from the geometry of
spacetime, and that the geometry is uniquely determined by the two-dimensional
field theory on the world sheet. The modular forms that appear in these
constructions admit complex multiplication, and allow an interpretation as
generalized McKay-Thompson series associated to the Mathieu and Conway groups.
This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page
Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers
The influence of magnetic anisotropy on nanosecond magnetization reversal in
coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission
microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic
samples the reversal of the soft FeNi layer is determined by domain wall
pinning that leads to the formation of small and irregular domains. In samples
with uniaxial magnetic anisotropy, the domains are larger and the influence of
local interlayer coupling dominates the domain structure and the reversal of
the FeNi layer
High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates
We present high-speed photometric observations of ZZ Ceti white dwarf
candidates drawn from the spectroscopic survey of bright DA stars from the
Villanova White Dwarf Catalog by Gianninas et al., and from the recent
spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et
al. We report the discovery of six new ZZ Ceti pulsators from these surveys,
and several photometrically constant DA white dwarfs, which we then use to
refine the location of the ZZ Ceti instability strip.Comment: 4 pages, 1 table, 2 figures, to appear in "19th European White Dwarf
Workshop" in the ASP Conference Serie
Face-to-face: Social work and evil
The concept of evil continues to feature in public discourses and has been reinvigorated in some academic disciplines and caring professions. This article navigates social workers through the controversy surrounding evil so that they are better equipped to acknowledge, reframe or repudiate attributions of evil in respect of themselves, their service users or the societal contexts impinging upon both. A tour of the landscape of evil brings us face-to-face with moral, administrative, societal and metaphysical evils, although it terminates in an exhortation to cultivate a more metaphorical language. The implications for social work ethics, practice and education are also discussed
Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic
Monte Carlo (MC) simulations of lattice models are a widely used way to
compute thermodynamic properties of substitutional alloys. A limitation to
their more widespread use is the difficulty of driving a MC simulation in order
to obtain the desired quantities. To address this problem, we have devised a
variety of high-level algorithms that serve as an interface between the user
and a traditional MC code. The user specifies the goals sought in a high-level
form that our algorithms convert into elementary tasks to be performed by a
standard MC code. For instance, our algorithms permit the determination of the
free energy of an alloy phase over its entire region of stability within a
specified accuracy, without requiring any user intervention during the
calculations. Our algorithms also enable the direct determination of
composition-temperature phase boundaries without requiring the calculation of
the whole free energy surface of the alloy system
- …