272 research outputs found
Recommended from our members
The STAR detector magnet subsystem
The RHIC (Relativistic Heavy Ion Collider) Accelerator currently under construction at Brookhaven National Laboratory will have large detectors at two of its six intersection regions. One of these detectors, known as STAR (Solenoidal Tracker At RHIC), weighs 1100 tons and is being built around a large solenoid magnet. The magnet is 7.32 in in diameter, 7.25 m long and utilizes three different sizes of room temperature aluminum coils. The magnet will operate with a field set from 0.25 T to 0.5 T and have a field uniformity of better than 1000 ppm over a portion of its interior region. This paper describes the magnet design, fabrication and assembly requirements and presents the current construction status
Recommended from our members
A production in Au-Au collisions at the AGS
The results of a measurement of production in Au-Au collisions at 11.6 A GeV/c by Experiment 891 at the Brookhaven AGS are presented. The measurements cover the rapidity region of 2.0 to 3.2 and transverse momenta of 0.0 to 1.4 GeV/c. The results are compared with similar measurements of Si-Si interactions and the predictions of ARC and RQMD models
Finite sum of gluon ladders and high energy cross sections
A model for the Pomeron at is suggested. It is based on the idea of a
finite sum of ladder diagrams in QCD. Accordingly, the number of -channel
gluon rungs and correspondingly the powers of logarithms in the forward
scattering amplitude depends on the phase space (energy) available, i.e. as
energy increases, progressively new prongs with additional gluon rungs in the
-channel open. Explicit expressions for the total cross section involving
two and three rungs or, alternatively, three and four prongs (with
and as highest terms, respectively) are fitted to the proton-proton
and proton-antiproton total cross section data in the accelerator region. Both
QCD calculation and fits to the data indicate fast convergence of the series.
In the fit, two terms (a constant and a logarithmically rising one) almost
saturate the whole series, the term being small and the next one,
, negligible. Theoretical predictions for the photon-photon total
cross section are also given.Comment: 18 pages, LaTeX, 2 EPS figures, uses axodraw.st
Proton-proton scattering above 3 GeV/c
A large set of data on proton-proton differential cross sections, analyzing
powers and the double polarization parameter A_NN is analyzed employing the
Regge formalism. We find that the data available at proton beam momenta from 3
GeV/c to 50 GeV/c exhibit features that are very well in line with the general
characteristics of Regge phenomenology and can be described with a model that
includes the rho, omega, f_2, and a_2 trajectories and single Pomeron exchange.
Additional data, specifically for spin-dependent observables at forward angles,
would be very helpful for testing and refining our Regge model.Comment: 16 pages, 19 figures; revised version accepted for publication in
EPJ
Causality and dispersion relations and the role of the S-matrix in the ongoing research
The adaptation of the Kramers-Kronig dispersion relations to the causal
localization structure of QFT led to an important project in particle physics,
the only one with a successful closure. The same cannot be said about the
subsequent attempts to formulate particle physics as a pure S-matrix project.
The feasibility of a pure S-matrix approach are critically analyzed and their
serious shortcomings are highlighted. Whereas the conceptual/mathematical
demands of renormalized perturbation theory are modest and misunderstandings
could easily be corrected, the correct understanding about the origin of the
crossing property requires the use of the mathematical theory of modular
localization and its relation to the thermal KMS condition. These new concepts,
which combine localization, vacuum polarization and thermal properties under
the roof of modular theory, will be explained and their potential use in a new
constructive (nonperturbative) approach to QFT will be indicated. The S-matrix
still plays a predominant role but, different from Heisenberg's and
Mandelstam's proposals, the new project is not a pure S-matrix approach. The
S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references,
corrections of misprints and bad formulation
Strangeness Enhancement in and Interactions at SPS Energies
The systematics of strangeness enhancement is calculated using the HIJING and
VENUS models and compared to recent data on , and
collisions at CERN/SPS energies (). The HIJING model is used to
perform a {\em linear} extrapolation from to . VENUS is used to
estimate the effects of final state cascading and possible non-conventional
production mechanisms. This comparison shows that the large enhancement of
strangeness observed in collisions, interpreted previously as possible
evidence for quark-gluon plasma formation, has its origins in non-equilibrium
dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced
back to the change in the production dynamics %from to minimum bias
and central collisions. A factor of two enhancement of at
mid-rapidity is indicated by recent data, where on the average {\em one}
projectile nucleon interacts with only {\em two} target nucleons. There appears
to be another factor of two enhancement in the light ion reaction relative
to , when on the average only two projectile nucleons interact with two
target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil
Models for Type Ia supernovae and related astrophysical transients
We give an overview of recent efforts to model Type Ia supernovae and related
astrophysical transients resulting from thermonuclear explosions in white
dwarfs. In particular we point out the challenges resulting from the
multi-physics multi-scale nature of the problem and discuss possible numerical
approaches to meet them in hydrodynamical explosion simulations and radiative
transfer modeling. We give examples of how these methods are applied to several
explosion scenarios that have been proposed to explain distinct subsets or, in
some cases, the majority of the observed events. In case we comment on some of
the successes and shortcoming of these scenarios and highlight important
outstanding issues.Comment: 20 pages, 2 figures, review published in Space Science Reviews as
part of the topical collection on supernovae, replacement corrects typos in
the conclusions sectio
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
- …