6 research outputs found

    Generic Production System Model of Personalized Production

    No full text
    Manufacturing companies are operating in a turbulent business ecosystem that calls for product variety, product mix flexibility, volume scalability and high efficiency. Personalized production arises as new production paradigm to replace mass personalization. The paper proposes a generic model for the design of production systems for the paradigm of personalized production. The model applies the system design methodology Axiomatic Design and uses the notation of Axiomatic Design Theory for Systems combined with the product precedence graph for product structure modeling. The model represents the static system structure, decomposed into its subsystems, and explains the dynamic behavior of the system during operation, depending on the product’s architecture. It is intended as a reference model for production system planning

    Dimensionierung wandlungsfähiger Fabriken: Planungsprozess zur Festlegung einer idealen wirtschaftlichen Werksgröße

    No full text
    The adaption of factory structures to reflect frequent changes in its production program is one of the big challenges for production enterprises. Changes of customer demand often reach the limits of existing flexibility. The factory must thus be able to change structurally: An economically feasible degree of changeability has to be set. The article presents a planning process to define a strategic "change-frame", which limits the minimal and maximal factory size

    Planspiel Logistikprozesse

    No full text
    Das vorliegende Dokument enthält sowohl Grundinformationen als auch die Arbeitsvorlage für ein Planspiel, welches Vor- und Nachteile unterschiedlicher Logistikprinzipien aufzeigt. Im Planspiel werden die Produktions- und Logistikprozesse eines fiktiven Produkts mittels Spielsteinen simuliert. Jedes Produkt besteht aus Vorbaugruppen, welche wiederum aus Einzelkomponenten bestehen. Die Produktionsschritte sind sequenziell festgelegt und können auf verschiedene Arten organisiert werden. Randbedingungen für jede Spielrunde sind eine bestimmte und immer gleiche Abfolge von Kundenbestellungen und ein einheitlich gefülltes Rohwarenlager. Die Produktpalette enthält Standardprodukte und Sonderteile sowie Produkte mit Extrakomponenten. Damit wird eine variantenreiche Produktion modelliert. Im Spielablauf werden Läger, Logistikwege, Informationsfluss, Steuerungsarten und -punkte sowie Prozesszeiten simulativ abgebildet. Für jede Spielrunde sind 300 Sekunden Spielzeit mit 6 Personen vorgesehen, die jeweilig die Rollen des Kommissionierers, Montagearbeiters oder Versandmitarbeiters einnehmen. Nach Ablauf der Zeit werden Kennzahlen aufgenommen: Anzahl der Lieferungen, Lieferzeit, Kundentakt, Bestände, Durchlaufzeit und die Zufriedenheit von Führungsebene und Kunden. Damit werden die einzelnen Logistikprinzipien wie One-Piece-Flow, segmentierte Produktion oder verschiedene Kanban-Lösungen kennzahlenbasiert verglichen. Im Planspiel wird der Ablauf interaktiv mit den Teilnehmern gestaltet und die Ergebnisse können selbstständig in den Unterlagen notiert werden. Abschließend werden die zusammenfassenden Daten anhand einer Übersicht der behandelten Logistikprinzipien dargestellt und die Erkenntnisse in der Gruppe diskutiert

    Effiziente Montagesysteme ohne Band und Takt: Sind modulare Produktionsstrukturen eine konkurrenzfähige Alternative zur abgetakteten Linie?

    No full text
    Increasing numbers of product variants and changing production volumes cause high losses of efficiency in rigidly linked synchronized assembly lines. Modular production structures of flexibly linked process modules present an alternative to such lines. This paper explores the ability of such modular structures to produce personalized products in high volumes with high performance and determines the conditions for their competitiveness compared to the classic line

    Das Applikationszentrum Industrie 4.0: Vorgehen, Planung und Erfolgsfaktoren

    No full text
    Industrie 4.0 challenges both the know-how as well as the infrastructure of industrial enterprises. Application centers can decisively support the digital transformation of companies. This paper describes a business model-based approach to plan such application centers and derives critical factors for success. Content and findings of the paper are based on the experiences gained during the planning and operation of the Application Center Industrie 4.0 at Fraunhofer IPA and IFF of the University of Stuttgart

    Design Representations

    No full text
    The results of design activities must be transmitted to people who need them for their tasks, e.g., manufacturing, construction, software development, etc. The objectives of this chapter are to understand how design information should be represented and conveyed using standards, geometric drawings, design matrices for the complete system, DPi/DPj matrices, and industry-specific functional diagrams. The goal of this chapter is to introduce how the design information is typically conveyed to its ultimate user. Proper descriptions of design must address the needs of the users of the design results. For example, the manufacturing group may need the information on the geometry of each part, acceptable tolerances for each dimension, materials, the hardness of each piece, the complete assembly of the system, etc. On the other hand, those charged with the task of evaluating and implementing the design may need information on the entire assembly of parts, operating procedure, power requirements, etc. To facilitate these processes, different professional groups have established commonly used methods, conventions, and practices. The “design information” is typically represented using representation methods that are used in a given profession, sometimes adapted by each company to deal with their specific needs. This chapter reviews some of the fundamental representation methods of design that have been developed by various professional groups, typically non-government entities. For instance, there are national professional organizations such as the American Society of Mechanical Engineers (ASME) that have established the standards for certain products such as pressure vessels and boilers to assure the safety of certain products. Globally, there is the International Organizations for Standardization (ISO), an international non-governmental organization that has established voluntary international standards, which facilitates world trade by providing common standards worldwide. In this book that emphasizes Axiomatic Design (AD), the relationship between functional requirements (FRs) and design parameters (DPs) is the basis for product design. In AD, the design process begins with the identification of FRs first, followed by the development of DPs, which are specifically chosen to satisfy the FRs. Therefore, in AD, the relationship between FRs and DPs forms the core of design representation, in addition to the representation of geometric shapes in the case of the design that involves solid objects. A design matrix is a form of design representation that describes the relationship between the functions and physical entities. The design matrix between FRs and DPs is the most effective means of identifying the coupled designs that are to be avoided in AD. To highlight the powerfulness of the design matrix representation and the wide applicability of AD, several families of representations, as stated above, have been considered. In particular, the chapter is structured in such a way to explain, in a first instance, what should be the connections between designing with AD and representing the results. The concept of module and tolerance will be introduced. Therefore, representation families will be presented: standard mechanical drawing, piping and instrumentation diagram (P&ID), and software. A case study is presented as well, to bring a real example of a complete application of AD. The choice to illustrate both mechanical drawing and software representation comes to the authors’ will to emphasize that the design process should follow a structured approach, in particular, the AD one, regardless the nature of what is designed. Proper descriptions of a design must address the needs of a variety of users of the design information. Some may only be interested in knowing the functional and physical relationships in terms of FR and DP hierarchy. Some may need to exact geometric details of the designed parts in terms of DPs, their tolerances, the geometric shape, and their relationships. Some may need the information on the assembly of DPs, i.e., information on DPi/DPj relationships. The objectives of this chapter are to describe how design information is typically represented and conveyed using standards, geometric drawings, design matrices, DPi/DPj matrices, and industry-specific functional diagrams
    corecore