154 research outputs found
The FARMSCAPE approach to farming systems research
Abstract From six years of participatory action research has emerged Farmers', Advisers' and Researchers' Monitoring, Simulation. Communication And Performance Evaluation (FARMSCAPE) as an approach for supporting farmers' management of dryland crop production. In contrast to the strategy of producing decision support software for farmers, FARMSCAPE features simulation-aided discussions about management among farmers, advisers, and (sometimes) researchers. The key is a capability to flexibly simulate the consequences of a wide range of crop and cropland management alternatives in a variable climate at a paddock scale using local soil and weather data. The high level of interest among farmers has led to a current focus on transfer of the technology to agricultural service providers. Keywords: Farming systems, on-farm, simulation, soil monitoring, action research The term "farming systems research" is most commonly used in Australia to mean "research on bio-physical sub-systems aimed at improving systems of farming". Research methodology tends to be a flexible and pragmatic use of formal experimental design and statistical analysis. Experiments are designed to represent aspects of farming sufficiently realistically for results to be meaningful to farmers and advisers but without unnecessarily or overly straining professional standards for methodology concerning making valid comparisons with adequate confidence. In the interest of the former, experiments are often located on commercial farms, and, increasingly, with farmers. A second established way of interpreting the term "farming systems research" is "systems research which is about farming". Here the emphasis is the application to farming of systems concepts and methodologies that have evolved over the past 50 years, mainly outside agriculture. This paradigm has been termed "systems agriculture" (1). Emphasis here is on approaches to learning/ research/ intervention when the system under study does not lend itself readily to scientific experimentation. Feasibility of the latter declines with increases in scale and/or, complexity and temporal variability. Two pools of methodological resources for addressing such systems are available—often termed "hard" and "soft" approaches. "Hard" systems approaches have, at their core, mathematical models of the systems of interest designed to represent the essential aspects of function in relation to environment. But the hard lesson in the main stream of the hard systems movement has been that the approach turns out to be appropriate only to those aspects of systems that are not complicated by people with purposes and freedom of choice (3). The fact that the specific nature of a farm system substantially reflects the design and management efforts of a farmer means that a "soft" systems approach, eg participative action research, should enhance the usefulness and impact of the research on real farming. McCown, RL; Carberry, PS; Foale, MA; Hochman, Z; Coutts, JA; Dalgliesh, NP (1998) The FARMSCAPE approach to farming systems research Proc. 9th Aust. Agron. Conf., Wagga Wagga (1998) 633-636
Farmers, advisers and researchers learning together better management of crops and croplands
Summary. Farmers in the northeastern sub-tropics of Australia must cope with very high climatic variability in order to succeed in crop production. Their capacity for innovation was tapped by means of an on-farm research project that brought farmers, advisers and researchers together on the Darling Downs and in central Queensland. The researchers added value to the farmers' own experiments on fertility and water use efficiency by soil and weather monitoring at specific sites and then using a simulation model of cropping systems to extend findings to a wider context of climate and soil. The advisers extended knowledge aquired from this experience via local farmer networks and have undertaken training in the use of simulation to support farmers' management decisions. The experience described opens up possibilities for developing new, cost-effective ways for devising and testing improved farm management
Recommended from our members
Dynamic Analysis of Double Wishbone Front Suspension Systems for Sport Motorcycles
In this paper, two alternative front suspension systems and their influence on motorcycle dynamics are investigated. Based on an existing motorcycle mathematical model, the front end is modified to accommodate both Girder and Hossack suspension systems. Both of them have in common a double wishbone design that varies the front end geometry on certain manoeuvrings and, consequently, the machine’s behaviour. The kinematics of the two systems and their impact on the motorcycle performance is analysed and compared to the well known telescopic fork suspension system. Stability study for both systems is carried out by means of root-loci methods, in which the main oscillation modes, weave and wobble, are studied and compared to the baseline model
Management of Acute Coronary Syndromes During the Coronavirus Disease 2019 Pandemic: Deviations from Guidelines and Pragmatic Considerations for Patients and Healthcare Workers
Coronavirus disease 2019 (COVID-19) is forcing cardiology departments to rapidly adapt existing clinical guidelines to a new reality and this is especially the case for acute coronary syndrome pathways. In this focused review, the authors discuss how COVID-19 is affecting acute cardiology care and propose pragmatic guideline modifications for the diagnosis and management of acute coronary syndrome patients, particularly around the appropriateness of invasive strategies as well as length of hospital stay. The authors also discuss the use of personal protective equipment for healthcare workers in cardiology. Based on shared global experiences and growing peer-reviewed literature, it is possible to put in place modified acute coronary syndrome treatment pathways to offer safe pragmatic decisions to patients and staff
Whales, dolphins or fishes? The ethnotaxonomy of cetaceans in São Sebastião, Brazil
The local knowledge of human populations about the natural world has been addressed through ethnobiological studies, especially concerning resources uses and their management. Several criteria, such as morphology, ecology, behavior, utility and salience, have been used by local communities to classify plants and animals. Studies regarding fishers' knowledge on cetaceans in the world, especially in Brazil, began in the last decade. Our objective is to investigate the folk classification by fishers concerning cetaceans, and the contribution of fishers' local knowledge to the conservation of that group. In particular, we aim to record fishers' knowledge in relation to cetaceans, with emphasis on folk taxonomy. The studied area is São Sebastião, located in the southeastern coast of Brazil, where 70 fishers from 14 communities were selected according to their fishing experience and interviewed through questionnaires about classification, nomenclature and ecological aspects of local cetaceans' species. Our results indicated that most fishers classified cetaceans as belonging to the life-form 'fish'. Fishers' citations for the nomenclature of the 11 biological species (10 biological genera), resulted in 14 folk species (3 generic names). Fishers' taxonomy was influenced mostly by the phenotypic and cultural salience of the studied cetaceans. Cultural transmission, vertical and horizontal, was intimately linked to fishers' classification process. The most salient species, therefore well recognized and named, were those most often caught by gillnets, in addition to the biggest ones and those most exposed by media, through TV programs, which were watched and mentioned by fishers. Our results showed that fishers' ecological knowledge could be a valuable contribution to cetaceans' conservation, helping to determine areas and periods for their protection, indicating priority topics for research and participating in alternative management related to the gillnet fisheries
Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology Results of the JUSTIFY-PCI Study
Background—Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. / Methods and Results—Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P0.80 had a significantly smaller gain (Δ4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. / Conclusions—Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI
Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina
Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae – or any feedstock – which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g−1) and the protein-rich Asparagopsis taxiformis (>15 g 100 g−1 of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties
Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts
- …