8 research outputs found
Effect of additional water supply during grain filling on protein composition and epitope characteristics of winter oats
Pure oats in gluten-free diets (GFD) represent important nutritional benefits for people suffering from celiac disease (CD). However, oat cultivars do not contain the typical CD-related wheat gliadin analog polypeptides. Emerging evidence suggests that oat cultivars containing gluten-like epitopes in avenin sequences may pose potential health risks for celiac patients in rare cases, depending on the individualâs susceptibility. Consequently, it is necessary to screen oats in terms of protein and epitope composition, to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variation of oat protein composition directly related to health-related and techno-functional properties and to examine how the protein compositional parameters change due to irrigation during the grain-filling period as compared to the natural rain-fed grown, in a large winter oat population of different geographic origin.
Elements of an oat sample population representing 164 winter oat varieties from 8 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by SE-HPLC, while the 70% ethanol extracted proteins were analyzed by RP-HPLC. Protein extracts are separated into 3 main groups of fractions on the SE-HPLC column; polymeric, avenin, and non-avenin monomeric protein groups, representing 59.17â80.87%, 12.89â31.03%, and 3.40â9.41% of total protein content, respectively. The ratio of polymeric to monomeric proteins varied between 1.71 and 6.07. 91 RP-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population.
The various parameters identified a lot of variation, confirming the significance of genotypic variation. In addition, it was also established that the additional water supply during grain filling significantly affected the various quantitative parameters of protein content, but not its qualitative structure. This environmental effect, however, was strongly genotype-dependent. Winter oat genotypes with low levels of epitope content were identified and it was proven that these characteristics were independent of the environmental factor of water availability. These genotypes are appropriate for initiating a specific breeding program to yield oat cultivars suitable for CD patients
Classical and quantum properties of a 2-sphere singularity
Recently Boehmer and Lobo have shown that a metric due to Florides, which has
been used as an interior Schwarzschild solution, can be extended to reveal a
classical singularity that has the form of a two-sphere. Here the singularity
is shown to be a scalar curvature singularity that is both timelike and
gravitationally weak. It is also shown to be a quantum singularity because the
Klein-Gordon operator associated with quantum mechanical particles approaching
the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio
Static Anisotropic Solutions in f(T) Theory
In a previously work, we undertook a static and anisotropic content in
theory and obtained new spherically symmetric solutions considering a constant
torsion and some particular conditions for the pressure. In this paper, still
in the framework of theory, new spherically symmetric solutions are
obtained, first considering the general case of an isotropic fluid and later
the anisotropic content case in which the generalized conditions for the matter
content are considered such that the energy density, the radial and tangential
pressures depend on the algebraic and its derivative .
Moreover, we obtain the algebraic function through the reconstruction
method for two cases and also study a polytropic model for the stellar
structure.Comment: 23 pages, Published in Euro. Phys. J.
Preparation and characterization of Avenin-Enriched oat protein by chill precipitation for feeding trials in celiac disease
The safety of oats for people with celiac disease remains unresolved. While oats have attractive nutritional properties that can improve the quality and palatability of the restrictive, low fiber gluten-free diet, rigorous feeding studies to address their safety in celiac disease are needed. Assessing the oat prolamin proteins (avenins) in isolation and controlling for gluten contamination and other oat components such as fiber that can cause non-specific effects and symptoms is crucial. Further, the avenin should contain all reported immunogenic T cell epitopes, and be deliverable at a dose that enables biological responses to be correlated with clinical effects. To date, isolation of a purified food-grade avenin in sufficient quantities for feeding studies has not been feasible. Here, we report a new gluten isolation technique that enabled 2 kg of avenin to be extracted from 400 kg of wheat-free oats under rigorous gluten-free and food grade conditions. The extract consisted of 85% protein of which 96% of the protein was avenin. The concentration of starch (1.8% dry weight), ÎČ-glucan (0.2% dry weight), and free sugars (1.8% dry weight) were all low in the final avenin preparation. Other sugars including oligosaccharides, small fructans, and other complex sugars were also low at 2.8% dry weight. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the proteins in these preparations showed they consisted only of oat proteins and were uncontaminated by gluten containing cereals including wheat, barley or rye. Proteomic analysis of the avenin enriched samples detected more avenin subtypes and fewer other proteins compared to samples obtained using other extraction procedures. The identified proteins represented five main groups, four containing known immune-stimulatory avenin peptides. All five groups were identified in the 50% (v/v) ethanol extract however the group harboring the epitope DQ2.5-ave-1b was less represented. The avenin-enriched protein fractions were quantitatively collected by reversed phase HPLC and analyzed by MALDI-TOF mass spectrometry. Three reverse phase HPLC peaks, representing ~40% of the protein content, were enriched in proteins containing DQ2.5-ave-1a epitope. The resultant high quality avenin will facilitate controlled and definitive feeding studies to establish the safety of oat consumption by people with celiac disease
Comparison of quality properties between high-molecular-weight glutenin subunits 5 + 10 and 2 + 12 near-isogenic lines under three common wheat genetic backgrounds
Background and objectives: Near-isogenic lines (NILs) of three Chinese winter wheat varieties were used to explore quality differences between subunits 5 + 10 and 2 + 12. Protein content, gluten quality, rheological properties, and bread-making quality in the NILs possessing subunits 5 + 10 and 2 + 12 were assessed and compared.
Findings: All measured parameters except protein content significantly changed when subunits 2 + 12 were replaced by subunits 5 + 10. The incorporation of subunits 5 + 10, in the absence of subunits 2 + 12, increased dramatically dough strength, but the extensibility was slightly decreased. The improved functionality of subunits 5 + 10 was only pronounced in the recipient cultivar (Xiaoyan 22) which had weak gluten strength but better extensibility, whereas, the inferior overall quality was obtained in the recipient cultivars (Xinong 2208 and Xinong 1718) carrying medium-to-strong gluten strength and poor extensibility.
Conclusions: The functionality of subunits 5 + 10 was well expressed in the recipient cultivars with weak gluten strength and better extensibility.
Significance and novelty: The findings expanded our knowledge on the functionality of subunits 5 + 10 on different genetic backgrounds with gradient elasticity-to-extensibility ratio. The transformed lines with extremely strong gluten strength and reduced extensibility could be used as parents in wheat quality breeding and their flour would be suitable for blending with flour of the lower grade
Investigation of protein and epitope characteristics of oats and its implications for celiac disease
The use of pure oats (oats cultivated with special care to avoid gluten contamination from wheat, rye, and barley) in the gluten-free diet (GFD) represents important nutritional benefits for the celiac consumer. However, emerging evidence suggests that some oat cultivars may contain wheat gliadin analog polypeptides. Consequently, it is necessary to screen oats in terms of protein and epitope composition to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variability of oat protein composition directly related to health-related and techno-functional properties. Elements of an oat sample population representing 162 cultivated varieties from 20 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by size exclusion-high performance liquid chromatography (SE-HPLC) while the 70% ethanol-extracted proteins were analyzed by RP-HPLC. Protein extracts separated into three main groups of fractions on the SE-HPLC column: polymeric proteins, avenins (both containing three subgroups based on their size), and soluble proteins, representing respectively 68.79â86.60, 8.86â27.72, and 2.89â11.85% of the total protein content. The ratio of polymeric to monomeric proteins varied between 1.37 and 3.73. Seventy-six reversed phase-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population. Their distribution among the cultivars varied significantly, 6â23 peaks per cultivar. The number of appearances of peaks also showed large variation: one peak has been found in 107 samples, while 15 peaks have been identified, which appeared in less than five cultivars. An estimation method for ranking the avenin-epitope content of the samples has been developed by using MS spectrometric data of collected RP-HPLC peaks and bioinformatics methods. Using ELISA methodology with the R5 antibody, a high number of the investigated samples were found to be contaminated with wheat, barley, or rye