54 research outputs found
Construction of the LISA back-side fibre link interferometer prototype
The Laser Interferometer Space Antenna (LISA) is a joint ESA NASA mission to be launched in 2018. It is an interferometric gravitational wave detector with a measurement band going from 0.1 mHz to 1 Hz. The conceptual interferometer design is unique and includes many challenging aspects that must be analysed in terms of their stability in advance to the mission. One of these new features is the so-called back-side fibre link, which connects the two optical benches on-board each spacecraft. In its optical fibre, two frequency shifted laser beams are counter-propagating. LISA will only reach its design sensitivity, if these two beams inside this fibre experience the same pathlength changes down to a level of approximately 1 pm/\sqrt{\rm Hz} in the mHz range. In this paper, we present the construction of a quasi-monolithic interferometer that represents a cutout of the LISA interferometry concerning the back-side fibre link. In order to ensure a high thermal and mechanical stability of the interferometer, the hydroxide-catalysis bonding technique was applied. For the construction of the interferometer, a number of new alignment techniques and solutions were developed that are suitable for LISA prototype experiments
Early-Life Metabolic and Hormonal Markers in Blood and Growth until Age 2 Years:Results from a Randomized Controlled Trial in Healthy Infants Fed a Modified Low-Protein Infant Formula
Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infants on blood metabolic and hormonal markers at the age of four months. We further aimed to investigate the association between these markers and anthropometric parameters and body composition until the age of two years. Design: Term infants received a modified low-protein formula (mLP) (1.7 g protein/100 kcal) or a specifically designed control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double blinded RCT. The outcomes were compared with a breast-fed (BF) group. Glucose, insulin, leptin, IGF-1, IGF-BP1, -BP2, and -BP3 levels were measured at the age of 4 months. Anthropometric parameters and body composition were assessed until the age of 2 years. Groups were compared using linear regression analysis. Results: No significant differences were observed in any of the blood parameters between the formula groups (n = 53 mLP; n = 44 CTRL) despite a significant difference in protein intake. Insulin and HOMA-IR were higher in both formula groups compared to the BF group (n = 36) (p < 0.001). IGF-BP1 was lower in both formula groups compared to the BF group (p < 0.01). We found a lower IGF-BP2 level in the CTRL group compared to the BF group (p < 0.01) and a higher IGF-BP3 level in the mLP group compared to the BF group (p = 0.03). There were no significant differences in glucose, leptin, and IGF-1 between the three feeding groups. We found specific associations of all early-life metabolic and hormonal blood parameters with long-term growth and body composition except for IGF-1. Conclusions: Reducing protein intake by 20% did not result in a different metabolic profile in formula-fed infants at 4 months of age. Formula-fed infants had a lower insulin sensitivity compared to breast-fed infants. We found associations between all metabolic and hormonal markers (except for IGF-1) determined at age 4 months and growth and body composition up to two years of age
Testing the GRACE follow-on triple mirror assembly
We report on the successful testing of the GRACE follow-on triple mirror assembly (TMA) prototype. This component serves to route the laser beam in a proposed follow-on mission to the Gravity Recovery and Climate Explorer (GRACE) mission, containing an optical instrument for space-based distance measurement between satellites. As part of this, the TMA has to meet a set of stringent requirements on both the optical and mechanical properties. The purpose of the TMA prototype testing is to establish the feasibility of the design, materials choice and fabrication techniques. Here we report on co-alignment testing of this device to the arc second (5 ÎĽrad) level and thermal alignment stability testing to 1 ÎĽ rad {{K}-1}
Optical bench development for LISA
For observation of gravitational waves at frequencies between 30 ÎĽHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching.
A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard
Recommended from our members
Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles
Extraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of 12 nm. The particles displayed superparamagnetic properties and a low r2/r1 ratio suitable for a T1 contrast agent. The particles were functionalized with bile acid, which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step toward liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents
Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins
Distribution of SiO2 nanoparticles in 3D liver microtissues
Jana Fleddermann,1 Julia Susewind,2 Henrike Peuschel,1 Marcus Koch,1 Isabella Tavernaro,1 Annette Kraegeloh1 1INM – Leibniz Institute for New Materials, Saarbrücken, Germany; 2Pharmacelsus GmbH, Saarbrücken, Germany Introduction: Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials.Materials and methods: In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy.Results: Spheroids were exposed to 100 µg mL-1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size.Conclusion: Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation. Keywords: silica nanoparticles, human hepatocarcinoma cells, spheroids, penetration  
Recommended from our members
Kinetic and spectroscopic responses of pH-sensitive nanoparticles: Influence of the silica matrix
Intracellular pH sensing with fluorescent nanoparticles is an emerging topic as pH plays several roles in physiology and pathologic processes. Here, nanoparticle-sized pH sensors (diameter far below 50 nm) for fluorescence imaging have been described. Consequently, a fluorescent derivative of pH-sensitive hydroxypyrene with pKa = 6.1 was synthesized and subsequently embedded in core and core-shell silica nanoparticles via a modified Stöber process. The detailed fluorescence spectroscopic characterization of the produced nanoparticles was carried out for retrieving information about the environment within the nanoparticle core. Several steady-state and time-resolved fluorescence spectroscopic methods hint to the screening of the probe molecule from the solvent, but it sustained interactions with hydrogen bonds similar to that of water. The incorporation of the indicator dye in the water-rich silica matrix neither changes the acidity constant nor dramatically slows down the protonation kinetics. However, cladding by another SiO2 shell leads to the partial substitution of water and decelerating the response of the probe molecule toward pH. The sensor is capable of monitoring pH changes in a physiological range by using ratiometric fluorescence excitation with λex = 405 nm and λex = 488 nm, as confirmed by the confocal fluorescence imaging of intracellular nanoparticle uptake
- …