381 research outputs found

    Nutrients and pathways that regulate health span and life span

    Get PDF
    Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20\u201325%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span

    Evaluating Ecklonia maxima water-soluble polysaccharides as a growth promoter of tomato seedlings and resistance inducer to Fusarium wilt

    Get PDF
    Alternatives to chemicals for plant management are increasingly used to reduce environmental pollution. Seed treatment with natural products may act as a priming effect by stimulating seedling growth and plant defence responses against fungal pathogens. In this framework, algae produce a wide variety of bioactive metabolites, which can be used in agriculture as biofertilizers or biostimulants. The purpose of this study was to investigate the possible role of water-soluble polysaccharides (WSPs) from the brown alga Ecklonia maxima applied on tomato seed in enhancing plant growth and inducing resistance to Fusarium oxysporum via modulation of multiple physiological parameters and metabolic pathways. Here, we first characterized the E. maxima WSPs by FT-IR spectroscopy, and then we tested the WSPs as growth promoters on tomato seedlings, and the physiological and defence responses of plants during pathogen infection. We found that WSP seed treatment without pathogen challenge stimulated seedling height and root growth by 24.5 and 62.9%, respectively. Under pathogen infection, plants exhibited long-lasting resistance against F. oxysporum until 46 days after seed treatment. The metabolic changes associated with resistance to Fusarium wilt in plant roots were related to an increase in phenols, flavonoids and protein contents as well as a higher chitinase and beta-1,3-D-glucanase enzyme activity. Moreover, PR1a, PR3 and other defence gene expressions were significantly increased. Resistance to F. oxysporum as a result of WSP seed treatment was also supported by FT-IR analysis of tomato roots. Infected roots showed a decrease in the relative intensity of the bands due to the syringyl ring and amide I and amide II in proteins. In contrast, WSP treatment alone and in the presence of the pathogen exhibited a spectral profile similar to that of the control. This research emphasizes the potential role of algal polysaccharides applied by seed treatment in promoting seedling growth and priming plant resistance against soil-borne pathogens

    Jania adhaerens Primes Tomato Seed against Soil-Borne Pathogens

    Get PDF
    Managing soil-borne pathogens is complex due to the restriction of the most effective synthetic fungicides for soil treatment. In this study, we showed that seed priming with Jania adhaerens water-soluble polysaccharides (JA WSPs) was successful in protecting tomato plants from the soil-borne pathogens Rhizoctonia solani, Pythium ultimum, and Fusarium oxysporum under greenhouse conditions. WSPs were extracted from dry thallus by autoclave-assisted method, and the main functional groups were characterized by using FT-IR spectroscopy. WSPs were applied by seed treatment at 0.3, 0.6 and 1.2 mg/mL doses, and each pathogen was inoculated singly in a growing substrate before seeding/transplant. Overall, WSPs increased seedling emergence, reduced disease severity and increased plant development depending on the dose. Transcriptional expression of genes related to phenylpropanoid, chlorogenic acid, SAR and ISR pathways, and chitinase and beta-1,3 glucanase activities were investigated. Among the studied genes, HQT, HCT, and PR1 were significantly upregulated depending on the dose, while all doses increased PAL and PR2 expression as well as beta-1,3 glucanase activity. These results demonstrated that, besides their plant growth promotion activity, JA WSPs may play a protective role in triggering plant defense responses potentially correlated to disease control against soil-borne pathogens

    Polyamine supplementation reduces DNA damage in adipose stem cells cultured in 3-D

    Get PDF
    According to previous research, natural polyamines exert a role in regulating cell committment and differentiation from stemness during skeletal development. In order to assess whether distinct polyamine patterns are associated with different skeletal cell types, primary cultures of stem cells, chondrocytes or osteoblasts were dedicated for HPLC analysis of intracellular polyamines. Spermine (SPM) and Spermidine (SPD) levels were higher in adipose derived stem cells (ASC) compared to mature skeletal cells, i.e. chondrocytes and osteoblasts, confirming the connection of polyamine content with stemness. To establish whether polyamines can protect ASC against oxidative DNA damage in a 3-D differentiation model, the level of gamma H2AX was measured by western blot, and found to correlate with age and BMI of patients. Addition of either polyamine to ASC was able to hinder DNA damage in the low micromolecular range, with marked reduction of gamma H2AX level at 10 mu M SPM and 5 mu M SPD. Molecular analysis of the mechanisms that might underlie the protective effect of polyamine supplementation evidences a possible involvement of autophagy. Altogether, these results support the idea that polyamines are able to manage both stem cell differentiation and cell oxidative damage, and therefore represent appealing tools for regenerative and cell based applications
    corecore