6,954 research outputs found

    Local sublattice-symmetry breaking in rotationally faulted multilayer graphene

    Full text link
    Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-symmetry of the individual layers. We present a theory of this mechanism, which reduces to an effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of existing knowledge available for the study of rotationally faulted graphene multilayers. We demonstrate quantitative agreement between our theory and a recent experiment.Comment: Valley dependence in Eqs. (2) and (7) corrected; coordinates x and y interchanged in the appendi

    Effective theory of rotationally faulted multilayer graphene - the local limit

    Full text link
    Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-symmetry of the individual layers. Earlier we have presented a theory of this mechanism, which reduces to an effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of existing knowledge available for the study of rotationally faulted graphene multilayers. Agreement of this theory with a recent experiment in a strong magnetic field was demonstrated. Here we explore some of the predictions of this theory for the system in zero magnetic field at large interlayer bias, when it becomes local in space. We use that theory to illuminate the physics of localization and velocity renormalization in twisted graphene bilayers.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1009.449

    Numerical semigroups problem list

    Full text link
    We propose a list of open problems in numerical semigroups.Comment: To appear in the CIM Bulletin, number 33. (http://www.cim.pt/) 13 page

    Grain Boundary Loops in Graphene

    Full text link
    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a new class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy/interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a "flower" pattern in scanning tunneling microscopy (STM) studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.Comment: 23 pages, 7 figures. Revised title; expanded; updated reference

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement

    Full text link
    We present here an overview of the Fourier Transform Scanning Tunneling spectroscopy technique (FT-STS). This technique allows one to probe the electronic properties of a two-dimensional system by analyzing the standing waves formed in the vicinity of defects. We review both the experimental and theoretical aspects of this approach, basing our analysis on some of our previous results, as well as on other results described in the literature. We explain how the topology of the constant energy maps can be deduced from the FT of dI/dV map images which exhibit standing waves patterns. We show that not only the position of the features observed in the FT maps, but also their shape can be explained using different theoretical models of different levels of approximation. Thus, starting with the classical and well known expression of the Lindhard susceptibility which describes the screening of electron in a free electron gas, we show that from the momentum dependence of the susceptibility we can deduce the topology of the constant energy maps in a joint density of states approximation (JDOS). We describe how some of the specific features predicted by the JDOS are (or are not) observed experimentally in the FT maps. The role of the phase factors which are neglected in the rough JDOS approximation is described using the stationary phase conditions. We present also the technique of the T-matrix approximation, which takes into account accurately these phase factors. This technique has been successfully applied to normal metals, as well as to systems with more complicated constant energy contours. We present results recently obtained on graphene systems which demonstrate the power of this technique, and the usefulness of local measurements for determining the band structure, the map of the Fermi energy and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of Physics D: Applied Physic

    The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction

    Full text link
    We present a structural analysis of the multi-layer graphene-4HSiC(000-1}) system using Surface X-Ray Reflectivity. We show for the first time that graphene films grown on the C-terminated (000-1}) surface have a graphene-substrate bond length that is very short (0.162nm). The measured distance rules out a weak Van der Waals interaction to the substrate and instead indicates a strong bond between the first graphene layer and the bulk as predicted by ab-initio calculations. The measurements also indicate that multi-layer graphene grows in a near turbostratic mode on this surface. This result may explain the lack of a broken graphene symmetry inferred from conduction measurements on this system [C. Berger et al., Science 312, 1191 (2006)].Comment: 9 pages with 6 figure

    The Cognitive Consequences of Emotion Regulation: An ERP Investigation

    Get PDF
    Increasing evidence suggests that emotion regulation (ER) strategies modulate encoding of information presented during regulation; however, no studies have assessed the impact of cognitive reappraisal ER strategies on the processing of stimuli presented after the ER period. Participants in the present study regulated emotions to unpleasant pictures and then judged whether a word was negative or neutral. Electromyographic measures (corrugator supercilli) confirmed that individuals increased and decreased negative affect according to ER condition. Event-related potential analyses revealed smallest N400 amplitudes to negative and neutral words presented after decreasing unpleasant emotions and smallest P300 amplitudes to words presented after increasing unpleasant emotions whereas reaction time data failed to show ER modulations. Results are discussed in the context of the developing ER literature, as well as theories of emotional incongruity (N400) and resource allocation (P300).Psycholog
    corecore