6,954 research outputs found
Local sublattice-symmetry breaking in rotationally faulted multilayer graphene
Interlayer coupling in rotationally faulted graphene multilayers breaks the
local sublattice-symmetry of the individual layers. We present a theory of this
mechanism, which reduces to an effective Dirac model with space-dependent mass
in an important limit. It thus makes a wealth of existing knowledge available
for the study of rotationally faulted graphene multilayers. We demonstrate
quantitative agreement between our theory and a recent experiment.Comment: Valley dependence in Eqs. (2) and (7) corrected; coordinates x and y
interchanged in the appendi
Effective theory of rotationally faulted multilayer graphene - the local limit
Interlayer coupling in rotationally faulted graphene multilayers breaks the
local sublattice-symmetry of the individual layers. Earlier we have presented a
theory of this mechanism, which reduces to an effective Dirac model with
space-dependent mass in an important limit. It thus makes a wealth of existing
knowledge available for the study of rotationally faulted graphene multilayers.
Agreement of this theory with a recent experiment in a strong magnetic field
was demonstrated. Here we explore some of the predictions of this theory for
the system in zero magnetic field at large interlayer bias, when it becomes
local in space. We use that theory to illuminate the physics of localization
and velocity renormalization in twisted graphene bilayers.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1009.449
Numerical semigroups problem list
We propose a list of open problems in numerical semigroups.Comment: To appear in the CIM Bulletin, number 33. (http://www.cim.pt/) 13
page
Grain Boundary Loops in Graphene
Topological defects can affect the physical properties of graphene in
unexpected ways. Harnessing their influence may lead to enhanced control of
both material strength and electrical properties. Here we present a new class
of topological defects in graphene composed of a rotating sequence of
dislocations that close on themselves, forming grain boundary loops that either
conserve the number of atoms in the hexagonal lattice or accommodate
vacancy/interstitial reconstruction, while leaving no unsatisfied bonds. One
grain boundary loop is observed as a "flower" pattern in scanning tunneling
microscopy (STM) studies of epitaxial graphene grown on SiC(0001). We show that
the flower defect has the lowest energy per dislocation core of any known
topological defect in graphene, providing a natural explanation for its growth
via the coalescence of mobile dislocations.Comment: 23 pages, 7 figures. Revised title; expanded; updated reference
Quantum States of Topologically Massive Electrodynamics and Gravity
The free quantum states of topologically massive electrodynamics and gravity
in 2+1 dimensions, are explicitly found. It is shown that in both theories the
states are described by infrared-regular polarization tensors containing a
regularization phase which depends on the spin. This is done by explicitly
realizing the quantum algebra on a functional Hilbert space and by finding the
Wightman function to define the scalar product on such a Hilbert space. The
physical properties of the states are analyzed defining creation and
annihilation operators.
For both theories, a canonical and covariant quantization procedure is
developed. The higher order derivatives in the gravitational lagrangian are
treated by means of a preliminary Dirac procedure.
The closure of the Poincar\'e algebra is guaranteed by the
infrared-finiteness of the states which is related to the spin of the
excitations through the regularization phase. Such a phase may have interesting
physical consequences.Comment: 21 page, latex, no figure
Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement
We present here an overview of the Fourier Transform Scanning Tunneling
spectroscopy technique (FT-STS). This technique allows one to probe the
electronic properties of a two-dimensional system by analyzing the standing
waves formed in the vicinity of defects. We review both the experimental and
theoretical aspects of this approach, basing our analysis on some of our
previous results, as well as on other results described in the literature. We
explain how the topology of the constant energy maps can be deduced from the FT
of dI/dV map images which exhibit standing waves patterns. We show that not
only the position of the features observed in the FT maps, but also their shape
can be explained using different theoretical models of different levels of
approximation. Thus, starting with the classical and well known expression of
the Lindhard susceptibility which describes the screening of electron in a free
electron gas, we show that from the momentum dependence of the susceptibility
we can deduce the topology of the constant energy maps in a joint density of
states approximation (JDOS). We describe how some of the specific features
predicted by the JDOS are (or are not) observed experimentally in the FT maps.
The role of the phase factors which are neglected in the rough JDOS
approximation is described using the stationary phase conditions. We present
also the technique of the T-matrix approximation, which takes into account
accurately these phase factors. This technique has been successfully applied to
normal metals, as well as to systems with more complicated constant energy
contours. We present results recently obtained on graphene systems which
demonstrate the power of this technique, and the usefulness of local
measurements for determining the band structure, the map of the Fermi energy
and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of
Physics D: Applied Physic
The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction
We present a structural analysis of the multi-layer graphene-4HSiC(000-1})
system using Surface X-Ray Reflectivity. We show for the first time that
graphene films grown on the C-terminated (000-1}) surface have a
graphene-substrate bond length that is very short (0.162nm). The measured
distance rules out a weak Van der Waals interaction to the substrate and
instead indicates a strong bond between the first graphene layer and the bulk
as predicted by ab-initio calculations. The measurements also indicate that
multi-layer graphene grows in a near turbostratic mode on this surface. This
result may explain the lack of a broken graphene symmetry inferred from
conduction measurements on this system [C. Berger et al., Science 312, 1191
(2006)].Comment: 9 pages with 6 figure
A longitudinal study assessing depression in hepatitis C: does gender play a role in the new onset depression during interferon-alpha treatment?
No description supplie
The Cognitive Consequences of Emotion Regulation: An ERP Investigation
Increasing evidence suggests that emotion regulation (ER) strategies modulate encoding of information presented during regulation; however, no studies have assessed the impact of cognitive reappraisal ER strategies on the processing of stimuli presented after the ER period. Participants in the present study regulated emotions to unpleasant pictures and then judged whether a word was negative or neutral. Electromyographic measures (corrugator supercilli) confirmed that individuals increased and decreased negative affect according to ER condition. Event-related potential analyses revealed smallest N400 amplitudes to negative and neutral words presented after decreasing unpleasant emotions and smallest P300 amplitudes to words presented after increasing unpleasant emotions whereas reaction time data failed to show ER modulations. Results are discussed in the context of the developing ER literature, as well as theories of emotional incongruity (N400) and resource allocation (P300).Psycholog
- …
