532 research outputs found

    Superconductivity in Dense MgB2MgB_2 Wires

    Get PDF
    MgB2MgB_2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2MgB_2 can be synthesized from boron powders, in this letter we demonstrate that dense wires of MgB2MgB_2 can be prepared by exposing boron filaments to MgMg vapor. The resulting wires have a diameter of 160 μm{\mu}m, are better than 80% dense and manifest the full χ=1/4π\chi = -1/4{\pi} shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2MgB_2 is a highly conducting metal in the normal state with ρ(40K)\rho (40 K) = 0.38 μOhm\mu Ohm-cmcm. Using this value, an electronic mean free path, l600 A˚l \approx 600~\AA can be estimated, indicating that MgB2MgB_2 wires are well within the clean limit. TcT_c, Hc2(T)H_{c2}(T), and JcJ_c data indicate that MgB2MgB_2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.Comment: Figures' layout fixe

    Superconducting MgB2 thin films by pulsed laser deposition

    Get PDF
    Growth of MgB2 thin films by pulsed laser deposition is examined under ex situ and in situ processing conditions. For the ex situ process, Boron films grown by PLD were annealed at 900 C with excess Mg. For the in situ process, different approaches involving ablation from a stoichiometric target under different growth conditions, as well as multilayer deposition involving interposed Mg layers were examined and analyzed. Magnetic measurements on ex situ processed films show TC of ~39 K, while the current best in situ films show a susceptibility transition at ~ 22 K.Comment: 3 pages, PD

    Systematic effects of carbon doping on the superconducting properties of Mg(B1x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with HcH\perp c

    Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2

    Full text link
    We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB_2 and the isostructural AlB_2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions \alpha^2F are calculated for both systems. We also report on Raman measurements, which support the theoretical findings. The calculated generalized density-of-states for MgB_2 is in excellent agreement with recent neutron-scattering experiments. The main differences in the calculated phonon spectra and \alpha^2F are related to high frequency in-plane boron vibrations. As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an exceptionally strong coupling to electronic states at the Fermi energy. The total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43. Implications for the superconducting transition temperature are briefly discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let

    Penetration Depth and Anisotropy in MgB2

    Full text link
    The penetration depth lambda of MgB2 was deduced from both the ac susceptibility chi and the magnetization M(H) of sorted powders. The good agreement between the two sets of data without geometric correction for the grain orientation suggests that MgB2 is an isotropic superconductor.Comment: 9 pages, 5 figures; submitted to Physical Review B (February 28, 2001; revised June 28, 2001); reference list update

    Effects of C, Cu and Be substitutions in superconducting MgB2

    Full text link
    Density functional calculations are used to investigate the effects of partial substitutional alloying of the B site in MgB2 with C and Be alone and combined with alloying of the Mg site with Cu. The effect of such substitutions on the electronic structure, electron phonon coupling and superconductivity are discussed. We find that Be substitution for B is unfavorable for superconductivity as it leads to a softer lattice and weaker electron-phonon couplings. Replacement of Mg by Cu leads to an increase in the stiffness and doping level at the same time, while the carrier concentration can be controlled by partial replacement of B by C. We estimate that with full replacement of Mg by Cu and fractional substitution of B by C, Tc values of 50K may be attainable.Comment: 5 pages, 4 figure

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Magnetoresistivity and Complete Hc2(T)H_{c2}(T) in MgB2MgB_2

    Full text link
    Detailed magneto-transport data on dense wires of MgB2MgB_2 are reported for applied magnetic fields up to 18 T. The temperature and field dependencies of the electrical resistivity are consistent with MgB2MgB_2 behaving like a simple metal and following a generalized form of Kohler's rule. In addition, given the generally high TcT_c values and narrow resistive transition widths associated with MgB2MgB_2 synthesized in this manner, combined with applied magnetic fields of up to 18 T, an accurate and complete Hc2(T)H_{c2}(T) curve could be determined. This curve agrees well with curves determined from lower field measurements on sintered pellets and wires of MgB2MgB_2. Hc2(T)H_{c2}(T) is linear in TT over a wide range of temperature (7 K  T \le~T~\le 32 K) and has an upward curvature for TT close to TcT_c. These features are similar to other high κ\kappa, clean limit, boron-bearing intermetallics: YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C.Comment: minor changes in styl

    Temperature and Field Dependence of the Energy Gap of MgB2/Pb planar junction

    Full text link
    We have constructed MgB2/Pb planar junctions for both temperature and field dependence studies. Our results show that the small gap is a true bulk property of MgB2 superconductor, not due to surface effects. The temperature dependence of the energy gap manifests a nearly BCS-like behavior. Analysis of the effect of magnetic field on junctions suggests that the energy gap of MgB2 depends non-linearly on the magnetic field. Moreover, MgB2 has an upper critical field of 15 T, in agreement with some reported Hc2 from transport measurements.Comment: 5 pages, 5 figures. Submitted to Phys. Rev.
    corecore