930 research outputs found

    Quantum Hall Exciton Condensation at Full Spin Polarization

    Get PDF
    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at nu=1 as a function of Zeeman energy, E_Z. The critical layer separation d/l for exciton condensation initially increases rapidly with E_Z, but then reaches a maximum and begins a gentle decline. At high E_Z, where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small E_Z and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.Comment: 4 pages, 3 eps figure

    Quantum Hall Exciton Condensation at Full Spin Polarization

    Get PDF
    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at ν_T = 1 as a function of Zeeman energy E_Z. The critical layer separation (d/ℓ)_c for exciton condensation initially increases rapidly with E_Z, but then reaches a maximum and begins a gentle decline. At high E_Z, where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ, is much larger than at small E_Z and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids

    Exciton Transport and Andreev Reflection in a Bilayer Quantum Hall System

    Get PDF
    We demonstrate that counterflowing electrical currents can move through the bulk of the excitonic quantized Hall phase found in bilayer two-dimensional electron systems (2DES) even as charged excitations cannot. These counterflowing currents are transported by neutral excitons which are emitted and absorbed at the inner and outer boundaries of an annular 2DES via Andreev reflection

    Can Students Change Their Homework Behavior After The Midterm? Does It Help?

    Get PDF
    Using the Internet to administer homework allows us to determine if students change their homework habits during a semester and if this change results in an improvement in grades.&nbsp

    Dynamical Gate Tunable Supercurrents in Topological Josephson Junctions

    Full text link
    Josephson junctions made of closely-spaced conventional superconductors on the surface of 3D topological insulators have been proposed to host Andreev bound states (ABSs) which can include Majorana fermions. Here, we present an extensive study of the supercurrent carried by low energy ABSs in Nb/Bi2_2Se3_3/Nb Josephson junctions in various SQUIDs as we modulate the carrier density in the Bi2_2Se3_3 barriers through electrostatic top gates. As previously reported, we find a precipitous drop in the Josephson current at a critical value of the voltage applied to the top gate. This drop has been attributed to a transition where the topologically trivial 2DEG at the surface is nearly depleted, causing a shift in the spatial location and change in nature of the helical surface states. We present measurements that support this picture by revealing qualitative changes in the temperature and magnetic field dependence of the critical current across this transition. In particular, we observe pronounced fluctuations in the critical current near total depletion of the 2DEG that demonstrate the dynamical nature of the supercurrent transport through topological low energy ABSs.Comment: 6 pages, 6 figure

    Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at ν_T = 1

    Get PDF
    The area and perimeter dependence of the Josephson-like interlayer tunneling signature of the coherent ν_T = 1 quantum Hall phase in bilayer two-dimensional electron systems is examined. Electrostatic top gates of various sizes and shapes are used to locally define distinct ν_T = 1 regions in the same sample. Near the phase boundary with the incoherent ν_T = 1 state at large layer separation, our results demonstrate that the tunneling conductance in the coherent phase is closely proportional to the total area of the tunneling region. This implies that tunneling at ν_T = 1 is a bulk phenomenon in this regime

    Spin and the Coulomb Gap in the Half-Filled Lowest Landau Level

    Get PDF
    The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a new window onto the spin configuration of two-dimensional electron systems at high magnetic field.Comment: 6 pages, 4 postscript figures. Minor changes. To appear in Physical Review
    • …
    corecore