2,205 research outputs found

    Theory on the Temperature Dependence of Giant Magnetoresistance

    Full text link
    The temperature dependence of the giant magnetoresistance (GMR) for currents parallel and perpendicular to the multilayer plane, is discussed by taking account of the random exchange potentials, phonon scatterings and spin fluctuations. The effect of spin fluctuations, which plays an important role at finite temperatures, is included by means of the static functional-integral method developed previously by the present author. Our model calculations well explain the observed features of the parallel and perpendicular GMR of Fe/Cr and Co/Cu multilayers recently reported by Gijs {\it et al}.Comment: 20 pages (LATEX), 5 figures available on request to [email protected]

    Synchronization of spin-transfer oscillators driven by stimulated microwave currents

    Full text link
    We have simulated the non-linear dynamics of networks of spin-transfer oscillators. The oscillators are magnetically uncoupled but electrically connected in series. We use a modified Landau-Lifschitz- Gilbert equation to describe the motion of each oscillator in the presence of the oscillations of all the others. We show that the oscillators of the network can be synchronized not only in frequency but also in phase. The coupling is due to the microwave components of the current induced in each oscillator by the oscillations in all the other oscillators. Our results show how the emitted microwave power of spin-transfer oscillators can be considerably enhanced by current-induced synchronization in an electrically connected network. We also discuss the possible application of our synchronization mechanism to the interpretation of the surprisingly narrow microwave spectrum in some isolated spin-transfer oscillators

    Anomalous Hall Effect in Ferromagnetic Metals: Role of Phonons at Finite Temperature

    Full text link
    The anomalous Hall effect in a multiband tight-binding model is numerically studied taking into account both elastic scattering by disorder and inelastic scattering by the electron-phonon interaction. The Hall conductivity is obtained as a function of temperature TT, inelastic scattering rate γ\gamma, chemical potential μ\mu, and impurity concentration ximpx_{\rm imp}. We find that the new scaling law holds over a wide range of these parameters; σxy=(ασxx01+βσxx02)σxx2+b-\sigma_{xy}= (\alpha \sigma_{xx0}^{-1} + \beta \sigma_{xx0}^{-2}) \sigma_{xx}^2 + b, with σμν\sigma_{\mu \nu} (σμν0\sigma_{\mu \nu 0}) being the conductivity tensor (with only elastic scattering), which corresponds to the recent experimental observation [Phys. Rev. Lett. {\bf 103} (2009) 087206]. The condition of this scaling is examined. Also, it is found that the intrinsic mechanism depends on temperature under a resonance condition.Comment: 5 figure

    Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device

    Full text link
    We investigate the magneto-transport characteristics of nanospintronics single-electron devices. The devices consist of single non-magnetic nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co ferromagnetic leads. The comparison with simulations allows us attribute the observed magnetoresistance to either spin accumulation or anisotropic magneto-Coulomb effect (AMC), two effects with very different origins. The fact that the two effects are observed in similar samples demonstrates that a careful analysis of Coulomb blockade and magnetoresistance behaviors is necessary in order to discriminate them in magnetic single-electron devices. As a tool for further studies, we propose a simple way to determine if spin transport or AMC effect dominates from the Coulomb blockade I-V curves of the spintronics device

    Ordering in a spin glass under applied magnetic field

    Full text link
    Torque, torque relaxation, and magnetization measurements on a AuFe spin glass sample are reported. The experiments carried out up to 7 T show a transverse irreversibility line in the (H,T) plane up to high applied fields, and a distinct strong longitudinal irreversibility line at lower fields. The data demonstrate for that this type of sample, a Heisenberg spin glass with moderately strong anisotropy, the spin glass ordered state survives under high applied fields in contrast to predictions of certain "droplet" type scaling models. The overall phase diagram closely ressembles those of mean field or chiral models, which both have replica symmetry breaking transitions.Comment: 4 pages, 3 figures, accepted for PR
    corecore