198 research outputs found
\u3ci\u3eHistory of the Afghans \u3c/i\u3e
Translation from the original unpublished French manuscript by Captain William Jesse. History of Afghanistan
An Analysis of Charging Practices and their Impact on Battery Degradation in North American Electric Vehicles Built Between 2010-2020
Electric vehicles (EVs) are emerging as a component of the global solution to combat climate change. However, in North America, particularly in the United States and Canada, the transition away from internal combustion engines (ICE) has been slow. North America faces unique challenges due to its geographical size and population in comparison to other continents. The good news is that EV adoption is increasing within North America. Along with increased EV adoption, governments and public companies are constructing charging infrastructure to support increased consumer EV purchases. Despite increased adoption, many future and current owners throughout North American society have concerns about an electric vehiclesâ key feature: the battery. Many EV owners are concerned about the battery's State of Health (SOH) â how to keep batteries healthy and use best practices to keep their range at maximum capacity. SOH is influenced by five key factors: (1) temperature, (2) charge/discharge rate, (3) charge/discharge depth, (4) cyclic charging, and (5) ending State of Charge (SOC). This study primarily focuses on data centered around charging. This dissertation examines data generated by everyday EV users and uses it to predict how charging habits affect batteries over time. Charging effects include decreasing battery SOH and capacity degradation. Lowering the SOH reduces the battery's viability for continuous use; at approximately 70% SOH the battery is 'typically' deemed End of Life (EoL). The overall range of the EV is affected by capacity degradation; as batteries degrade, the total km (or miles) available decreases. This study uses regression analysis to examine relationships and predictors of SOH, temperature, levels of charging, and SOC. The data collected and analyzed determine best practices for charging batteries at home and abroad for consumers. There were two methods for analyzing data: (1) Using EV generated data (SOH, Charger Type) saved in CSV files via a smartphone application, and (2) Analyzing consumed energy in a large dataset using a segmentation process based on equivalent SOC differences between two points in time. The current study makes use of one of the largest datasets of "real world" data ever collected from EVs in the United States and Canada, with over one million lines. Eighteen models of EVs are used to make comparisons for amounts of degradation over one year. A discussion of how these findings affect EV ownersâ usage of models from 2010-2020 is included. Multiple recommendations for future studies are provided
Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure
RATIONALE:
In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear.
OBJECTIVE:
This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure.
METHODS AND RESULTS:
We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation.
CONCLUSIONS:
In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation
The language profile of formal thought disorder
Formal thought disorder (FTD) is clinically manifested as disorganized speech, but there have been only few investigations of its linguistic properties. We examined how disturbance of thought may relate to the referential function of language as expressed in the use of noun phrases (NPs) and the complexity of sentence structures. We used a comic strip description task to elicit language samples from 30 participants with schizophrenia (SZ), 15 with moderate or severe FTD (SZâ+âFTD), and 15 minimal or no FTD (SZâFTD), as well as 15 first-degree relatives of people with SZ (FDRs) and 15 neurotypical controls (NC). We predicted that anomalies in the normal referential use of NPs, sub-divided into definite and indefinite NPs, would identify FTD; and also that FTD would also be linked to reduced linguistic complexity as specifically measured by the number of embedded clauses and of grammatical dependents. Participants with SZâ+âFTD produced more referential anomalies than NC and produced the fewest definite NPs, while FDRs produced the most and thus also differed from NC. When referential anomalies were classed according to the NP type in which they occurred, the SZâ+âFTD group produced more anomalies in definite NPs than NC. Syntactic errors did not distinguish groups, but the SZâ+âFTD group exhibited significantly less syntactic complexity than non-SZ groups. Exploratory regression analyses suggested that production of definite NPs distinguished the two SZ groups. These results demonstrate that FTD can be identified in specific grammatical patterns which provide new targets for detection, intervention, and neurobiological studies
MicroRNA clusters integrate evolutionary constraints on expression and target affinities : the miR-6/5/4/286/3/309 cluster in Drosophila
This research was supported by the Hong Kong Research Grant Council GRF Grant (14103516), The Chinese University of Hong Kong Direct Grant (4053248), and TUYF Charitable Trust (6903957) (JHLH).A striking feature of microRNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a microRNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this microRNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of microRNA cluster members were also constructed. Expression of individual microRNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient microRNAs together (miR-5/4/286/3/309) or more recently evolved clustered microRNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed down-regulation of leg patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of microRNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct microRNAs. Considered together, the microRNA targets and the evolutionary ages of each microRNA in the cluster demonstrates the importance of microRNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing microRNAs.PostprintPeer reviewe
Recommended from our members
Developing multiscale and integrative natureâpeople scenarios using the Nature Futures Framework
1. Scientists have repeatedly argued that transformative, multiscale global scenarios are needed as tools in the quest to halt the decline of biodiversity and achieve sustainability goals.
2. As a first step towards achieving this, the researchers who participated in the scenarios and models expert group of the Intergovernmental ScienceâPolicy Platform on Biodiversity and Ecosystem Services (IPBES) entered into an iterative, participatory process that led to the development of the Nature Futures Framework (NFF).
3. The NFF is a heuristic tool that captures diverse, positive relationships of humans with nature in the form of a triangle. It can be used both as a boundary object for continuously opening up more plural perspectives in the creation of desirable nature scenarios and as an actionable framework for developing consistent nature scenarios across multiple scales.
4. Here we describe the methods employed to develop the NFF and how it fits into a longer term process to create transformative, multiscale scenarios for nature. We argue that the contribution of the NFF is twofold: (a) its ability to hold a plurality of perspectives on what is desirable, which enables the development of joint goals and visions and recognizes the possible convergence and synergies of measures to achieve these visions and (b), its multiscale functionality for elaborating scenarios and models that can inform decisionâmaking at relevant levels, making it applicable across specific places and perspectives on nature.
5. If humanity is to achieve its goal of a more sustainable and prosperous future rooted in a flourishing nature, it is critical to open up a space for more plural perspectives of humanânature relationships. As the global community sets out to develop new goals for biodiversity, the NFF can be used as a navigation tool helping to make diverse, desirable futures possible
Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age
Author Posting. Š American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA3203, doi:10.1029/2007PA001532.We use geochemical and isotope measurements on a 225-year old brain coral (Diploria labyrinthiformis) from the south shore of Bermuda (64°W, 32°N) to construct a record of decadal-to-centennial-scale climate variability. The coral was collected alive, and annual density bands visible in X radiographs delineate cold and warm seasons allowing for precise dating. Coral skeletons incorporate strontium (Sr) and calcium (Ca) in relative proportions inversely to the sea surface temperature (SST) in which the skeleton is secreted. Previous studies on this and other coral colonies from this region document the ability to reconstruct mean annual and wintertime SST using Sr/Ca measurements ( Goodkin et al., 2007 , 2005). The coral-based records of SST for the past 2 centuries show abrupt shifts at both decadal and centennial timescales and suggest that SST at the end of the Little Ice Age (between 1840 and 1860) was 1.5° ¹ 0.4°C colder than today (1990s). Coral-reconstructed SST has a greater magnitude change than does a gridded instrumental SST record from this region. This may result from several physical processes including high rates of mesoscale eddy propagation in this region. Oxygen isotope values (δ 18O) of the coral skeleton reflect changes in both temperature and the δ 18O of seawater (δOw), where δOw is proportional to sea surface salinity (SSS). We show in this study that mean annual and wintertime δ 18O of the carbonate (δOc) are correlated to both SST and SSS, but a robust, quantitative measure of SSS is not found with present calibration data. In combination, however, the Sr/Ca and δOc qualitatively reconstruct lower salinities at the end of the Little Ice Age relative to modern day. Temperature changes agree with other records from the Bermuda region. Radiative and atmospheric forcing may explain some of the SST variability, but the scales of implied changes in SST and SSS indicate large-scale ocean circulation impacts as well.A
WHOI OCCI Fellowship (N.F.G.), and grants from NSF (OCE-0402728)
and WHOI (N.F.G., K.A.H., A.L.C., and M.S.M.) supported this work
Developing multiscale and integrative natureâpeople scenarios using the Nature Futures Framework
1. Scientists have repeatedly argued that transformative, multiscale global scenarios
are needed as tools in the quest to halt the decline of biodiversity and achieve
sustainability goals.
2. As a first step towards achieving this, the researchers who participated in the
scenarios and models expert group of the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES) entered into an iterative,
participatory process that led to the development of the Nature Futures Framework
(NFF).
3. The NFF is a heuristic tool that captures diverse, positive relationships of humans
with nature in the form of a triangle. It can be used both as a boundary object
for continuously opening up more plural perspectives in the creation of desirable
nature scenarios and as an actionable framework for developing consistent nature
scenarios across multiple scales.
4. Here we describe the methods employed to develop the NFF and how it fits into a
longer term process to create transformative, multiscale scenarios for nature. We
argue that the contribution of the NFF is twofold: (a) its ability to hold a plurality
of perspectives on what is desirable, which enables the development of joint goals
and visions and recognizes the possible convergence and synergies of measures to
achieve these visions and (b), its multiscale functionality for elaborating scenarios
and models that can inform decision-making at relevant levels, making it applicable
across specific places and perspectives on nature.
5. If humanity is to achieve its goal of a more sustainable and prosperous future
rooted in a flourishing nature, it is critical to open up a space for more plural per-
spectives of humanânature relationships. As the global community sets out to de-
velop new goals for biodiversity, the NFF can be used as a navigation tool helping
to make diverse, desirable futures possible
- âŚ