8 research outputs found
Selective Three-Component Coupling for CO<sub>2</sub> Chemical Fixation to Boron Guanidinato Compounds
A selective three-component coupling
was employed to fix carbon dioxide to boron guanidinato compounds.
The one-pot reaction of carbon dioxide, carbodiimides, and borylamines
(ArNH)ĀBC<sub>8</sub>H<sub>14</sub> afforded the corresponding 1,2-adducts
{RĀ(H)ĀN}ĀCĀ{NĀ(Ar)}Ā(NR)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub>. Alternatively, the reaction with <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>NC or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC
gave the corresponding isocyanide 1,1-adducts {<i>i</i>-PrHN}ĀCĀ{NĀ(p-Me-C<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā{CNAr}ĀBC<sub>8</sub>H<sub>14</sub>. The molecular structures of products (2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH)ĀBC<sub>8</sub>H<sub>14</sub> <b>7</b>, {<i>i</i>-PrĀ(H)ĀN}ĀCĀ{NĀ(p-MeC<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub> <b>9</b>, {CyĀ(H)ĀN}ĀCĀ{NĀ(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā(Cy)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub> <b>13</b>, and {<i>i</i>-PrHN}ĀCĀ{NĀ(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā{CNRā³}ĀBC<sub>8</sub>H<sub>14</sub> (Rā³
= <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) <b>14</b> and <b>15</b> were
established by X-ray diffraction. Density functional theory calculations
at the M05-2X level of theory revealed that CO<sub>2</sub> fixation
and formation of the corresponding adduct is exothermic and proceeds
via a nonchelate boron guanidinato intermediate
Selective Three-Component Coupling for CO<sub>2</sub> Chemical Fixation to Boron Guanidinato Compounds
A selective three-component coupling
was employed to fix carbon dioxide to boron guanidinato compounds.
The one-pot reaction of carbon dioxide, carbodiimides, and borylamines
(ArNH)ĀBC<sub>8</sub>H<sub>14</sub> afforded the corresponding 1,2-adducts
{RĀ(H)ĀN}ĀCĀ{NĀ(Ar)}Ā(NR)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub>. Alternatively, the reaction with <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>NC or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC
gave the corresponding isocyanide 1,1-adducts {<i>i</i>-PrHN}ĀCĀ{NĀ(p-Me-C<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā{CNAr}ĀBC<sub>8</sub>H<sub>14</sub>. The molecular structures of products (2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH)ĀBC<sub>8</sub>H<sub>14</sub> <b>7</b>, {<i>i</i>-PrĀ(H)ĀN}ĀCĀ{NĀ(p-MeC<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub> <b>9</b>, {CyĀ(H)ĀN}ĀCĀ{NĀ(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā(Cy)Ā(CO<sub>2</sub>)ĀBC<sub>8</sub>H<sub>14</sub> <b>13</b>, and {<i>i</i>-PrHN}ĀCĀ{NĀ(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā(N<i>i</i>-Pr)Ā{CNRā³}ĀBC<sub>8</sub>H<sub>14</sub> (Rā³
= <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) <b>14</b> and <b>15</b> were
established by X-ray diffraction. Density functional theory calculations
at the M05-2X level of theory revealed that CO<sub>2</sub> fixation
and formation of the corresponding adduct is exothermic and proceeds
via a nonchelate boron guanidinato intermediate
Migratory Insertion Reactions in Asymmetrical Guanidinate-Supported Zirconium Complexes
The new diguanidinate-supported dibenzylzirconium complexes
[ZrĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-(N-<i>i</i>-Pr)Ā(NAr)ĀCNHĀ(<i>i</i>-Pr)}<sub>2</sub>(CH<sub>2</sub>Ph)<sub>2</sub>] (Ar = 4-<i>t</i>-BuC<sub>6</sub>H<sub>4</sub> (<b>1</b>), 4-BrC<sub>6</sub>H<sub>4</sub> (<b>2</b>)) and [ZrĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-(NEt)Ā(N-<i>t</i>-Bu)ĀCNMe<sub>2</sub>}<sub>2</sub>(CH<sub>2</sub>Ph)<sub>2</sub>] (<b>3</b>) have
been prepared. Complexes <b>1</b> and <b>2</b> were synthesized
by protonolysis of [ZrĀ(CH<sub>2</sub>Ph)<sub>4</sub>] with the guanidine
derivatives and complex <b>3</b> by treating [ZrĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-(NEt)Ā(N-<i>t</i>-Bu)ĀCNMe<sub>2</sub>}<sub>2</sub>Cl<sub>2</sub>] (<b>4</b>) with MgClĀ(CH<sub>2</sub>Ph). The treatment of <b>1</b>ā<b>3</b> with 2,6-dimethylphenyl isocyanide (XyNC)
results in migratory insertion and formation of the terminal imido
species [ZrĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-(N-<i>i</i>-Pr)Ā(NĀ(Ar))ĀCNHĀ(<i>i</i>-Pr)}<sub>2</sub>{NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}] (Ar = 4-<i>t</i>-BuC<sub>6</sub>H<sub>4</sub> (<b>7</b>), 4-BrC<sub>6</sub>H<sub>4</sub> (<b>8</b>)) with <b>1</b> and <b>2</b>, respectively, whereas the analogous reaction with <b>3</b> leads to the enediamido complex [ZrĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-(NEt)Ā(N-<i>t</i>Bu)ĀCNMe<sub>2</sub>)}<sub>2</sub>{NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā(CH<sub>2</sub>Ph)ĀCī»CĀ(CH<sub>2</sub>Ph)ĀNĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}] (<b>9</b>). All the intermediate
iminoacyl complexes have been characterized, and the molecular structures
of <b>2</b>, <b>4</b>, and <b>9</b> have been determined
by single-crystal X-ray diffraction
New Alkylimido Niobium Complexes Supported by Guanidinate Ligands: Synthesis, Characterization, and Migratory Insertion Reactions
A series of guanidine proligands, 2-(4-(<i>tert</i>-butyl)Āphenyl)-1,3-diisopropylguanidine
(<b>1</b>), 2-(4-bromophenyl)-1,3-diisopropylguanidine (<b>2</b>), 2-(4-methoxyphenyl)-1,3-diisopropylguanidine (<b>3</b>), and 2,2ā²-(1,4-phenylene)ĀbisĀ(2ā²,3-diisopropylguanidine)
(<b>4</b>), has been reacted with [NbBz<sub>3</sub>(N<sup>t</sup>Bu)] (<b>5</b>) through a protonolysis reaction to obtain new
monoguanidinate-supported dibenzyl niobium complexes, {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>6</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā[(4-BrC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>7</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā[(4-MeOC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>8</b>), and the dinuclear
complex {[NbBz<sub>2</sub>(N<sup>t</sup>Bu)]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā(Nī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr))<sub>2</sub>]} (<b>9</b>). Complexes <b>6</b>, <b>8</b>, and <b>9</b> were structurally characterized. These neutral
complexes contain a Ī·<sup>2</sup>-benzyl ligand coordinated
to the metal center. Insertion migratory reactions with isocyanides
resulted in the formation of bis-Īŗ<sup>2</sup>-iminoacyl species,
{NbĀ(N<sup>t</sup>Bu)Ā(<sup>t</sup>BuNī»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>10</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu) (<sup>t</sup>BuNī»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-BrC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>11</b>), {NbĀ(N<sup>t</sup>Bu)Ā(<sup>t</sup>BuNī»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-MeOC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>12</b>), and the dinuclear complex {[NbĀ(N<sup>t</sup>Bu)Ā(<sup>t</sup>BuNī»CCH<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā(Nī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr))<sub>2</sub>]} (<b>13</b>), when <sup>t</sup>BuNC was used. The analogous reaction using XyNC (Xy = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) led to the formation of vinylamido
species, {NbĀ(N<sup>t</sup>Bu)Ā[NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀCHī»CHPh]Ā[BzCī»NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>14</b>), {NbĀ(N<sup>t</sup>Bu)Ā[NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀCHī»CHPh]Ā[BzCī»NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā[(4-BrC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>15</b>), {NbĀ(N<sup>t</sup>Bu)Ā[NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀCHī»CHPh]Ā[BzCī»NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā[(4-MeOC<sub>6</sub>H<sub>4</sub>)ĀNī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]} (<b>16</b>), and {[NbĀ(N<sup>t</sup>Bu)Ā[NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀCHī»CHPh]Ā[BzCī»NĀ(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā[Nī»CĀ(N<sup>i</sup>Pr)Ā(NH<sup>i</sup>Pr)]<sub>2</sub>]} (<b>17</b>), through a proposed 1,2-hydrogen shift mechanism
from an iminoacyl intermediate similar to those obtained from the
insertion of <sup>t</sup>BuNC. Complex <b>17</b> was structurally
characterized
Reactivity of the Dimer [{RuCl(Ī¼-Cl)(Ī·<sup>3</sup>:Ī·<sup>3</sup>āC<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (C<sub>10</sub>H<sub>16</sub> = 2,7-Dimethylocta-2,6-diene-1,8-diyl) toward Guanidines: Access to Ruthenium(IV) and Ruthenium(II) Guanidinate Complexes
The
novel bisĀ(allyl)ĀrutheniumĀ(IV) guanidinate complexes [RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(NR)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (C<sub>10</sub>H<sub>16</sub> = 2,7-dimethylocta-2,6-diene-1,8-diyl;
R = Ph (<b>3a</b>), 4-C<sub>6</sub>H<sub>4</sub>F (<b>3b</b>), 4-C<sub>6</sub>H<sub>4</sub>Cl (<b>3c</b>), 4-C<sub>6</sub>H<sub>4</sub>Me (<b>3d</b>), 3-C<sub>6</sub>H<sub>4</sub>Me
(<b>3e</b>) 4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu (<b>3f</b>)) have been synthesized by treatment of the dimeric precursor
[{RuClĀ(Ī¼-Cl)Ā(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (<b>1</b>) with 4 equiv of the
corresponding guanidine (<sup>i</sup>PrHN)<sub>2</sub>Cī»NR
(<b>2a</b>ā<b>f</b>). The easily separable guanidinium
chloride salts [(<sup>i</sup>PrHN)<sub>2</sub>CĀ(NHR)]Ā[Cl] (<b>4a</b>ā<b>f</b>) are also formed in these reactions. Attempts
to generate analogous RuĀ(IV) guanidinate complexes from (<sup>i</sup>PrHN)<sub>2</sub>Cī»NR (R = 2-C<sub>6</sub>H<sub>4</sub>Me
(<b>2g</b>), 2,4,6-C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub> (<b>2h</b>), 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub> (<b>2i</b>)) failed, due probably to the steric hindrance
associated with the aryl group in these guanidines. On the other hand,
the reaction of the dimer [{RuClĀ(Ī¼-Cl)Ā(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (<b>1</b>) with (<sup>i</sup>PrHN)<sub>2</sub>Cī»N-4-C<sub>6</sub>H<sub>4</sub>Cī¼N (<b>2j</b>) led to the selective formation
of the mononuclear derivative [RuCl<sub>2</sub>(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)Ā{Nī¼C-4-C<sub>6</sub>H<sub>4</sub>-Nī»CĀ(NH<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>}] (<b>5</b>), in which the guanidine coordinates to
ruthenium through the pendant nitrile unit. This result contrasts
with that obtained by employing the related RuĀ(II) dimer [{RuClĀ(Ī¼-Cl)Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)}<sub>2</sub>] (<b>6</b>),
whose reaction with <b>2j</b> afforded the expected guanidinate
complex [RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(N-4-C<sub>6</sub>H<sub>4</sub>Cī¼N)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>7</b>). Treatment of <b>7</b> with dimer <b>1</b> yielded the dinuclear RuĀ(II)/RuĀ(IV)
derivative <b>8</b>, via cleavage of the chloride bridges of <b>1</b> by the Cī¼N group of <b>7</b>. Reductive elimination
of the 2,7-dimethylocta-2,6-diene-1,8-diyl chain in [RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(NR)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (<b>3a</b>ā<b>f</b>) readily
took place in the presence of an excess of 2,6-dimethylphenyl isocyanide,
thus allowing the high-yield preparation of the octahedral rutheniumĀ(II)
compounds <i>mer</i>-[RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(NR)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(CN-2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>)<sub>3</sub>] (<b>9a</b>ā<b>f</b>). The structures of [RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(N-4-C<sub>6</sub>H<sub>4</sub>Me)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (<b>3d</b>), [RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(N-4-C<sub>6</sub>H<sub>4</sub>Cī¼N)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>7</b>), and <i>mer</i>-[RuClĀ{Īŗ<sup>2</sup>(<i>N,N</i>ā²)-CĀ(N-4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(CN-2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>)<sub>3</sub>] (<b>9f</b>), as well
as those of the guanidinium chloride salts <b>4a</b>ā<b>c</b>, were unequivocally confirmed by X-ray diffraction methods.
In addition, the catalytic behavior of the guanidinate complexes <b>3a</b>ā<b>f</b> and <b>9a</b>ā<b>f</b> in the redox isomerization of allylic alcohols was also
explored
Ruthenium(II) Arene Complexes with Asymmetrical Guanidinate Ligands: Synthesis, Characterization, and Application in the Base-Free Catalytic Isomerization of Allylic Alcohols
The rutheniumĀ(II) arene dimer [{RuClĀ(Ī¼-Cl)Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)}<sub>2</sub>] readily reacted
with 4 equiv of guanidines (<sup>i</sup>PrHN)<sub>2</sub>Cī»NR
(R = <sup>i</sup>Pr (<b>1a</b>), 4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu (<b>1b</b>), 4-C<sub>6</sub>H<sub>4</sub>Br
(<b>1c</b>), 2,4,6-C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub> (<b>1d</b>), 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub> (<b>1e</b>)) in toluene at room temperature to generate the
mononuclear complexes [RuClĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-CĀ(NR)Ā(N<sup>i</sup>Pr)ĀNH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2a</b>ā<b>e</b>) and the easily separable guanidinium chloride salts [(<sup>i</sup>PrHN)<sub>2</sub>CĀ(NHR)]Ā[Cl] (<b>3a</b>ā<b>e</b>). Compounds <b>2a</b>ā<b>e</b> and <b>3a</b>ā<b>e</b> were fully characterized by elemental
analysis and IR and NMR spectroscopy. The structures of [RuClĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-CĀ(N<sup>i</sup>Pr)<sub>2</sub>NH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2a</b>) and [RuClĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-CĀ(N-4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu)Ā(N<sup>i</sup>Pr)ĀNH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2b</b>) were also determined
by X-ray diffraction analysis. Regardless of the steric requirements
of the aromatic substituents, a nonsymmetric coordination of the guanidinate
anions in <b>2b</b>ā<b>e</b> was observed, in complete
accord with theoretical calculations (DFT) on the corresponding [RuClĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-CĀ(NR)Ā(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] and [RuClĀ{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā²-CĀ(N<sup>i</sup>Pr)<sub>2</sub>NHR}Ā(Ī·<sup>6</sup>-<i>p</i>-cymene)] models. Remarkably, complexes <b>2a</b>ā<b>e</b> were active catalysts for the redox
isomerization of allylic alcohols in the absence of base, which represents
the first catalytic application known for ruthenium guanidinate species
Guanidine Substitutions in Naphthyl Systems to Allow a Controlled Excited-State Intermolecular Proton Transfer: Tuning Photophysical Properties in Aqueous Solution
The excited-state
intermolecular proton transfer process (ESPT)
in aqueous solution is achieved and controlled by the incorporation
of guanidine groups in a fluorescent structure. The bisguanidine under
investigation exhibits a dual fluorescence emission with a very high
Stokes shifts in water, ā86 (7890) and 210 (14ā500)
nm (cm<sup>ā1</sup>), and an excited-stated deprotonation coupled
to an intramolecular charge transfer (ICT) process contributes to
this emission. The study demonstrates that the emission properties
of the different protonation states are strongly dependent on the
solvent environment, which also allows luminescence of the molecule
to be tuned. The results of this work show the potential utility of
guanidine substitution for the stabilization of ESPTāICT processes
in water and allow the subsequent logical design of new stimulus-responsive
fluorophores
Catalytically Generated Ferrocene-Containing Guanidines as Efficient Precursors for New Redox-Active Heterometallic Platinum(II) Complexes with Anticancer Activity
The
potential of structurally new ferrocene-functionalized guanidines
as redox-active precursors for the synthesis of heterometallic platinumĀ(II)āguanidine
complexes with anticancer activity was studied. To this end, an atom-economical
catalytic approach was followed by using ZnEt<sub>2</sub> to catalyze
the addition of aminoferrocene and 4-ferrocenylaniline to <i>N</i>,<i>N</i>ā²-diisopropylcarbodiimide. Furthermore,
reaction of a platinumĀ(II) source with the newly obtained guanidines
FcāNī»CĀ(NH<sup>i</sup>Pr)<sub>2</sub> (<b>3</b>) and FcĀ(1,4-C<sub>6</sub>H<sub>4</sub>)āNī»CĀ(NH<sup>i</sup>Pr)<sub>2</sub> (<b>4</b>) provided access to the heterometallic
complexes [PtCl<sub>2</sub>{FcāNī»CĀ(NH<sup>i</sup>Pr)<sub>2</sub>}Ā(DMSO)] (<b>5</b>), [PtCl<sub>2</sub>{FcĀ(1,4-C<sub>6</sub>H<sub>4</sub>)āNī»CĀ(NH<sup>i</sup>Pr)<sub>2</sub>}Ā(DMSO)] (<b>6</b>), and [PtCl<sub>2</sub>{FcĀ(1,4-C<sub>6</sub>H<sub>4</sub>)āNī»CĀ(NH<sup>i</sup>Pr)<sub>2</sub>}<sub>2</sub>] (<b>7</b>). Electrochemical studies evidence the remarkable
electronic effect played by the direct attachment of the guanidine
group to the ferrocene moiety in <b>3</b>, making its one-electron
oxidation extremely easy. Guanidine-based FeāPt complexes <b>5</b> and <b>6</b> are active against all human cancer cell
lines tested, with GI<sub>50</sub> values in the range 1.4ā2.6
Ī¼M, and are more cytotoxic than cisplatin in the resistant T-47D
and WiDr cell lines