8 research outputs found

    Selective Three-Component Coupling for CO<sub>2</sub> Chemical Fixation to Boron Guanidinato Compounds

    No full text
    A selective three-component coupling was employed to fix carbon dioxide to boron guanidinato compounds. The one-pot reaction of carbon dioxide, carbodiimides, and borylamines (ArNH)Ā­BC<sub>8</sub>H<sub>14</sub> afforded the corresponding 1,2-adducts {RĀ­(H)Ā­N}Ā­CĀ­{NĀ­(Ar)}Ā­(NR)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub>. Alternatively, the reaction with <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>NC or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC gave the corresponding isocyanide 1,1-adducts {<i>i</i>-PrHN}Ā­CĀ­{NĀ­(p-Me-C<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­{CNAr}Ā­BC<sub>8</sub>H<sub>14</sub>. The molecular structures of products (2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH)Ā­BC<sub>8</sub>H<sub>14</sub> <b>7</b>, {<i>i</i>-PrĀ­(H)Ā­N}Ā­CĀ­{NĀ­(p-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub> <b>9</b>, {CyĀ­(H)Ā­N}Ā­CĀ­{NĀ­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(Cy)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub> <b>13</b>, and {<i>i</i>-PrHN}Ā­CĀ­{NĀ­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­{CNRā€³}Ā­BC<sub>8</sub>H<sub>14</sub> (Rā€³ = <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) <b>14</b> and <b>15</b> were established by X-ray diffraction. Density functional theory calculations at the M05-2X level of theory revealed that CO<sub>2</sub> fixation and formation of the corresponding adduct is exothermic and proceeds via a nonchelate boron guanidinato intermediate

    Selective Three-Component Coupling for CO<sub>2</sub> Chemical Fixation to Boron Guanidinato Compounds

    No full text
    A selective three-component coupling was employed to fix carbon dioxide to boron guanidinato compounds. The one-pot reaction of carbon dioxide, carbodiimides, and borylamines (ArNH)Ā­BC<sub>8</sub>H<sub>14</sub> afforded the corresponding 1,2-adducts {RĀ­(H)Ā­N}Ā­CĀ­{NĀ­(Ar)}Ā­(NR)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub>. Alternatively, the reaction with <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>NC or 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC gave the corresponding isocyanide 1,1-adducts {<i>i</i>-PrHN}Ā­CĀ­{NĀ­(p-Me-C<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­{CNAr}Ā­BC<sub>8</sub>H<sub>14</sub>. The molecular structures of products (2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NH)Ā­BC<sub>8</sub>H<sub>14</sub> <b>7</b>, {<i>i</i>-PrĀ­(H)Ā­N}Ā­CĀ­{NĀ­(p-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub> <b>9</b>, {CyĀ­(H)Ā­N}Ā­CĀ­{NĀ­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(Cy)Ā­(CO<sub>2</sub>)Ā­BC<sub>8</sub>H<sub>14</sub> <b>13</b>, and {<i>i</i>-PrHN}Ā­CĀ­{NĀ­(<i>p</i>-MeC<sub>6</sub>H<sub>4</sub>)}Ā­(N<i>i</i>-Pr)Ā­{CNRā€³}Ā­BC<sub>8</sub>H<sub>14</sub> (Rā€³ = <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) <b>14</b> and <b>15</b> were established by X-ray diffraction. Density functional theory calculations at the M05-2X level of theory revealed that CO<sub>2</sub> fixation and formation of the corresponding adduct is exothermic and proceeds via a nonchelate boron guanidinato intermediate

    Migratory Insertion Reactions in Asymmetrical Guanidinate-Supported Zirconium Complexes

    No full text
    The new diguanidinate-supported dibenzylzirconium complexes [ZrĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-(N-<i>i</i>-Pr)Ā­(NAr)Ā­CNHĀ­(<i>i</i>-Pr)}<sub>2</sub>(CH<sub>2</sub>Ph)<sub>2</sub>] (Ar = 4-<i>t</i>-BuC<sub>6</sub>H<sub>4</sub> (<b>1</b>), 4-BrC<sub>6</sub>H<sub>4</sub> (<b>2</b>)) and [ZrĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-(NEt)Ā­(N-<i>t</i>-Bu)Ā­CNMe<sub>2</sub>}<sub>2</sub>(CH<sub>2</sub>Ph)<sub>2</sub>] (<b>3</b>) have been prepared. Complexes <b>1</b> and <b>2</b> were synthesized by protonolysis of [ZrĀ­(CH<sub>2</sub>Ph)<sub>4</sub>] with the guanidine derivatives and complex <b>3</b> by treating [ZrĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-(NEt)Ā­(N-<i>t</i>-Bu)Ā­CNMe<sub>2</sub>}<sub>2</sub>Cl<sub>2</sub>] (<b>4</b>) with MgClĀ­(CH<sub>2</sub>Ph). The treatment of <b>1</b>ā€“<b>3</b> with 2,6-dimethylphenyl isocyanide (XyNC) results in migratory insertion and formation of the terminal imido species [ZrĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-(N-<i>i</i>-Pr)Ā­(NĀ­(Ar))Ā­CNHĀ­(<i>i</i>-Pr)}<sub>2</sub>{NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}] (Ar = 4-<i>t</i>-BuC<sub>6</sub>H<sub>4</sub> (<b>7</b>), 4-BrC<sub>6</sub>H<sub>4</sub> (<b>8</b>)) with <b>1</b> and <b>2</b>, respectively, whereas the analogous reaction with <b>3</b> leads to the enediamido complex [ZrĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-(NEt)Ā­(N-<i>t</i>Bu)Ā­CNMe<sub>2</sub>)}<sub>2</sub>{NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­(CH<sub>2</sub>Ph)Ā­Cī—»CĀ­(CH<sub>2</sub>Ph)Ā­NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}] (<b>9</b>). All the intermediate iminoacyl complexes have been characterized, and the molecular structures of <b>2</b>, <b>4</b>, and <b>9</b> have been determined by single-crystal X-ray diffraction

    New Alkylimido Niobium Complexes Supported by Guanidinate Ligands: Synthesis, Characterization, and Migratory Insertion Reactions

    No full text
    A series of guanidine proligands, 2-(4-(<i>tert</i>-butyl)Ā­phenyl)-1,3-diisopropylguanidine (<b>1</b>), 2-(4-bromophenyl)-1,3-diisopropylguanidine (<b>2</b>), 2-(4-methoxyphenyl)-1,3-diisopropylguanidine (<b>3</b>), and 2,2ā€²-(1,4-phenylene)Ā­bisĀ­(2ā€²,3-diisopropylguanidine) (<b>4</b>), has been reacted with [NbBz<sub>3</sub>(N<sup>t</sup>Bu)] (<b>5</b>) through a protonolysis reaction to obtain new monoguanidinate-supported dibenzyl niobium complexes, {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā­[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>6</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā­[(4-BrC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>7</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu)Ā­[(4-MeOC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>8</b>), and the dinuclear complex {[NbBz<sub>2</sub>(N<sup>t</sup>Bu)]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā­(Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr))<sub>2</sub>]} (<b>9</b>). Complexes <b>6</b>, <b>8</b>, and <b>9</b> were structurally characterized. These neutral complexes contain a Ī·<sup>2</sup>-benzyl ligand coordinated to the metal center. Insertion migratory reactions with isocyanides resulted in the formation of bis-Īŗ<sup>2</sup>-iminoacyl species, {NbĀ­(N<sup>t</sup>Bu)Ā­(<sup>t</sup>BuNī—»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>10</b>), {NbBz<sub>2</sub>(N<sup>t</sup>Bu) (<sup>t</sup>BuNī—»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-BrC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>11</b>), {NbĀ­(N<sup>t</sup>Bu)Ā­(<sup>t</sup>BuNī—»CCH<sub>2</sub>Ph)<sub>2</sub>[(4-MeOC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>12</b>), and the dinuclear complex {[NbĀ­(N<sup>t</sup>Bu)Ā­(<sup>t</sup>BuNī—»CCH<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā­(Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr))<sub>2</sub>]} (<b>13</b>), when <sup>t</sup>BuNC was used. The analogous reaction using XyNC (Xy = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) led to the formation of vinylamido species, {NbĀ­(N<sup>t</sup>Bu)Ā­[NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­CHī—»CHPh]Ā­[BzCī—»NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā­[(4-<sup>t</sup>BuC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>14</b>), {NbĀ­(N<sup>t</sup>Bu)Ā­[NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­CHī—»CHPh]Ā­[BzCī—»NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā­[(4-BrC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>15</b>), {NbĀ­(N<sup>t</sup>Bu)Ā­[NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­CHī—»CHPh]Ā­[BzCī—»NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]Ā­[(4-MeOC<sub>6</sub>H<sub>4</sub>)Ā­Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]} (<b>16</b>), and {[NbĀ­(N<sup>t</sup>Bu)Ā­[NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­CHī—»CHPh]Ā­[BzCī—»NĀ­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)]]<sub>2</sub>[(C<sub>6</sub>H<sub>4</sub>)Ā­[Nī—»CĀ­(N<sup>i</sup>Pr)Ā­(NH<sup>i</sup>Pr)]<sub>2</sub>]} (<b>17</b>), through a proposed 1,2-hydrogen shift mechanism from an iminoacyl intermediate similar to those obtained from the insertion of <sup>t</sup>BuNC. Complex <b>17</b> was structurally characterized

    Reactivity of the Dimer [{RuCl(Ī¼-Cl)(Ī·<sup>3</sup>:Ī·<sup>3</sup>ā€‘C<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (C<sub>10</sub>H<sub>16</sub> = 2,7-Dimethylocta-2,6-diene-1,8-diyl) toward Guanidines: Access to Ruthenium(IV) and Ruthenium(II) Guanidinate Complexes

    No full text
    The novel bisĀ­(allyl)Ā­rutheniumĀ­(IV) guanidinate complexes [RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(NR)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (C<sub>10</sub>H<sub>16</sub> = 2,7-dimethylocta-2,6-diene-1,8-diyl; R = Ph (<b>3a</b>), 4-C<sub>6</sub>H<sub>4</sub>F (<b>3b</b>), 4-C<sub>6</sub>H<sub>4</sub>Cl (<b>3c</b>), 4-C<sub>6</sub>H<sub>4</sub>Me (<b>3d</b>), 3-C<sub>6</sub>H<sub>4</sub>Me (<b>3e</b>) 4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu (<b>3f</b>)) have been synthesized by treatment of the dimeric precursor [{RuClĀ­(Ī¼-Cl)Ā­(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (<b>1</b>) with 4 equiv of the corresponding guanidine (<sup>i</sup>PrHN)<sub>2</sub>Cī—»NR (<b>2a</b>ā€“<b>f</b>). The easily separable guanidinium chloride salts [(<sup>i</sup>PrHN)<sub>2</sub>CĀ­(NHR)]Ā­[Cl] (<b>4a</b>ā€“<b>f</b>) are also formed in these reactions. Attempts to generate analogous RuĀ­(IV) guanidinate complexes from (<sup>i</sup>PrHN)<sub>2</sub>Cī—»NR (R = 2-C<sub>6</sub>H<sub>4</sub>Me (<b>2g</b>), 2,4,6-C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub> (<b>2h</b>), 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub> (<b>2i</b>)) failed, due probably to the steric hindrance associated with the aryl group in these guanidines. On the other hand, the reaction of the dimer [{RuClĀ­(Ī¼-Cl)Ā­(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)}<sub>2</sub>] (<b>1</b>) with (<sup>i</sup>PrHN)<sub>2</sub>Cī—»N-4-C<sub>6</sub>H<sub>4</sub>Cī—¼N (<b>2j</b>) led to the selective formation of the mononuclear derivative [RuCl<sub>2</sub>(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)Ā­{Nī—¼C-4-C<sub>6</sub>H<sub>4</sub>-Nī—»CĀ­(NH<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>}] (<b>5</b>), in which the guanidine coordinates to ruthenium through the pendant nitrile unit. This result contrasts with that obtained by employing the related RuĀ­(II) dimer [{RuClĀ­(Ī¼-Cl)Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)}<sub>2</sub>] (<b>6</b>), whose reaction with <b>2j</b> afforded the expected guanidinate complex [RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(N-4-C<sub>6</sub>H<sub>4</sub>Cī—¼N)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>7</b>). Treatment of <b>7</b> with dimer <b>1</b> yielded the dinuclear RuĀ­(II)/RuĀ­(IV) derivative <b>8</b>, via cleavage of the chloride bridges of <b>1</b> by the Cī—¼N group of <b>7</b>. Reductive elimination of the 2,7-dimethylocta-2,6-diene-1,8-diyl chain in [RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(NR)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (<b>3a</b>ā€“<b>f</b>) readily took place in the presence of an excess of 2,6-dimethylphenyl isocyanide, thus allowing the high-yield preparation of the octahedral rutheniumĀ­(II) compounds <i>mer</i>-[RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(NR)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(CN-2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>)<sub>3</sub>] (<b>9a</b>ā€“<b>f</b>). The structures of [RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(N-4-C<sub>6</sub>H<sub>4</sub>Me)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>3</sup>:Ī·<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)] (<b>3d</b>), [RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(N-4-C<sub>6</sub>H<sub>4</sub>Cī—¼N)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>7</b>), and <i>mer</i>-[RuClĀ­{Īŗ<sup>2</sup>(<i>N,N</i>ā€²)-CĀ­(N-4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(CN-2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>)<sub>3</sub>] (<b>9f</b>), as well as those of the guanidinium chloride salts <b>4a</b>ā€“<b>c</b>, were unequivocally confirmed by X-ray diffraction methods. In addition, the catalytic behavior of the guanidinate complexes <b>3a</b>ā€“<b>f</b> and <b>9a</b>ā€“<b>f</b> in the redox isomerization of allylic alcohols was also explored

    Ruthenium(II) Arene Complexes with Asymmetrical Guanidinate Ligands: Synthesis, Characterization, and Application in the Base-Free Catalytic Isomerization of Allylic Alcohols

    No full text
    The rutheniumĀ­(II) arene dimer [{RuClĀ­(Ī¼-Cl)Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)}<sub>2</sub>] readily reacted with 4 equiv of guanidines (<sup>i</sup>PrHN)<sub>2</sub>Cī—»NR (R = <sup>i</sup>Pr (<b>1a</b>), 4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu (<b>1b</b>), 4-C<sub>6</sub>H<sub>4</sub>Br (<b>1c</b>), 2,4,6-C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub> (<b>1d</b>), 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub> (<b>1e</b>)) in toluene at room temperature to generate the mononuclear complexes [RuClĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-CĀ­(NR)Ā­(N<sup>i</sup>Pr)Ā­NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2a</b>ā€“<b>e</b>) and the easily separable guanidinium chloride salts [(<sup>i</sup>PrHN)<sub>2</sub>CĀ­(NHR)]Ā­[Cl] (<b>3a</b>ā€“<b>e</b>). Compounds <b>2a</b>ā€“<b>e</b> and <b>3a</b>ā€“<b>e</b> were fully characterized by elemental analysis and IR and NMR spectroscopy. The structures of [RuClĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-CĀ­(N<sup>i</sup>Pr)<sub>2</sub>NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2a</b>) and [RuClĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-CĀ­(N-4-C<sub>6</sub>H<sub>4</sub><sup>t</sup>Bu)Ā­(N<sup>i</sup>Pr)Ā­NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] (<b>2b</b>) were also determined by X-ray diffraction analysis. Regardless of the steric requirements of the aromatic substituents, a nonsymmetric coordination of the guanidinate anions in <b>2b</b>ā€“<b>e</b> was observed, in complete accord with theoretical calculations (DFT) on the corresponding [RuClĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-CĀ­(NR)Ā­(N<sup>i</sup>Pr)-NH<sup>i</sup>Pr}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] and [RuClĀ­{Īŗ<sup>2</sup><i>N</i>,<i>N</i>ā€²-CĀ­(N<sup>i</sup>Pr)<sub>2</sub>NHR}Ā­(Ī·<sup>6</sup>-<i>p</i>-cymene)] models. Remarkably, complexes <b>2a</b>ā€“<b>e</b> were active catalysts for the redox isomerization of allylic alcohols in the absence of base, which represents the first catalytic application known for ruthenium guanidinate species

    Guanidine Substitutions in Naphthyl Systems to Allow a Controlled Excited-State Intermolecular Proton Transfer: Tuning Photophysical Properties in Aqueous Solution

    No full text
    The excited-state intermolecular proton transfer process (ESPT) in aqueous solution is achieved and controlled by the incorporation of guanidine groups in a fluorescent structure. The bisguanidine under investigation exhibits a dual fluorescence emission with a very high Stokes shifts in water, ā‰ˆ86 (7890) and 210 (14ā€‰500) nm (cm<sup>ā€“1</sup>), and an excited-stated deprotonation coupled to an intramolecular charge transfer (ICT) process contributes to this emission. The study demonstrates that the emission properties of the different protonation states are strongly dependent on the solvent environment, which also allows luminescence of the molecule to be tuned. The results of this work show the potential utility of guanidine substitution for the stabilization of ESPTā€“ICT processes in water and allow the subsequent logical design of new stimulus-responsive fluorophores

    Catalytically Generated Ferrocene-Containing Guanidines as Efficient Precursors for New Redox-Active Heterometallic Platinum(II) Complexes with Anticancer Activity

    No full text
    The potential of structurally new ferrocene-functionalized guanidines as redox-active precursors for the synthesis of heterometallic platinumĀ­(II)ā€“guanidine complexes with anticancer activity was studied. To this end, an atom-economical catalytic approach was followed by using ZnEt<sub>2</sub> to catalyze the addition of aminoferrocene and 4-ferrocenylaniline to <i>N</i>,<i>N</i>ā€²-diisopropylcarbodiimide. Furthermore, reaction of a platinumĀ­(II) source with the newly obtained guanidines Fcā€“Nī—»CĀ­(NH<sup>i</sup>Pr)<sub>2</sub> (<b>3</b>) and FcĀ­(1,4-C<sub>6</sub>H<sub>4</sub>)ā€“Nī—»CĀ­(NH<sup>i</sup>Pr)<sub>2</sub> (<b>4</b>) provided access to the heterometallic complexes [PtCl<sub>2</sub>{Fcā€“Nī—»CĀ­(NH<sup>i</sup>Pr)<sub>2</sub>}Ā­(DMSO)] (<b>5</b>), [PtCl<sub>2</sub>{FcĀ­(1,4-C<sub>6</sub>H<sub>4</sub>)ā€“Nī—»CĀ­(NH<sup>i</sup>Pr)<sub>2</sub>}Ā­(DMSO)] (<b>6</b>), and [PtCl<sub>2</sub>{FcĀ­(1,4-C<sub>6</sub>H<sub>4</sub>)ā€“Nī—»CĀ­(NH<sup>i</sup>Pr)<sub>2</sub>}<sub>2</sub>] (<b>7</b>). Electrochemical studies evidence the remarkable electronic effect played by the direct attachment of the guanidine group to the ferrocene moiety in <b>3</b>, making its one-electron oxidation extremely easy. Guanidine-based Feā€“Pt complexes <b>5</b> and <b>6</b> are active against all human cancer cell lines tested, with GI<sub>50</sub> values in the range 1.4ā€“2.6 Ī¼M, and are more cytotoxic than cisplatin in the resistant T-47D and WiDr cell lines
    corecore