109 research outputs found

    Antiferroelectricity induced by electric field in NaNbO3-based lead-free ceramics

    Get PDF
    Electric fields are known to favor a ferroelectric phase with parallel electric dipoles over an antiferroelectric phase. We demonstrate in this Letter that electric fields can induce an antiferroelectric phase out of a ferroelectric phase in a NaNbO3-based lead-free polycrystalline ceramic. Such an unlikely ferroelectric-to-antiferroelectric phase transition occurs at fields with a reversed polarity and competes with the ferroelectric polarization reversal process

    Effect of Ba content on the stress-sensitivity of the antiferroelectric to ferroelectric phase transition in (Pb,La,Ba,)(Zr,Sn,Ti)O3 ceramics

    Get PDF
    The effect of Ba content on the stress sensitivity of the antiferroelectric to ferroelectric phase transition in (Pb0.94−xLa0.04Bax)[(Zr0.60Sn0.40)0.84Ti0.16]O3 ceramics is investigated through monitoring electric field-induced polarization and longitudinal strain under compressive prestresses. It is found that incorporation of Ba significantly suppresses the stress sensitivity of the phase transition, as manifested by slight decreases under prestresses up to 100 MPa in the maximum polarization (Pm) and longitudinal strain (xm). The energy storage density is even increased under the mechanical confinement in compositions x = 0.02 and 0.04. X-ray diffraction, transmission electron microscopy, and dielectric measurements indicate that the suppressed stress sensitivity is associated with the disruption of micrometersized antiferroelectric domains into nanodomains and the transition from antiferroelectric to relaxor behavior

    Random Walks: A Review of Algorithms and Applications

    Get PDF
    A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.Comment: 13 pages, 4 figure

    Tandem mass tag-based quantitative proteomic analysis of effects of multiple sevoflurane exposures on the cerebral cortex of neonatal and adult mice

    Get PDF
    IntroductionSevoflurane is the most commonly used general anesthetic in pediatric surgery, but it has the potential to be neurotoxic. Previous research found that long-term or multiple sevoflurane exposures could cause cognitive deficits in newborn mice but not adult mice, whereas short-term or single inhalations had little effect on cognitive function at both ages. The mechanisms behind these effects, however, are unclear.MethodsIn the current study, 6- and 60-day-old C57bl mice in the sevoflurane groups were given 3% sevoflurane plus 60% oxygen for three consecutive days, each lasting 2 hours, while those in the control group only got 60% oxygen. The cortex tissues were harvested on the 8th or 62nd day. The tandem mass tags (TMT)pro-based quantitative proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, Golgi staining, and western blotting analysis were applied to analyze the influences of multiple sevoflurane anesthesia on the cerebral cortex in mice with various ages. The Morris water maze (MWM) test was performed from postnatal day (P)30 to P36 or P84 to P90 after control or multiple sevoflurane treatment. Sevoflurane anesthesia affected spatial learning and memory and diminished dendritic spines primarily in newborn mice, whereas mature animals exhibited no significant alterations.ResultsA total of 6247 proteins were measured using the combined quantitative proteomics methods of TMTpro-labeled and LC-MS/MS, 443 of which were associated to the age-dependent neurotoxic mechanism of repeated sevoflurane anesthesia. Furthermore, western blotting research revealed that sevoflurane-induced brain damage in newborn mice may be mediated by increasing the levels of protein expression of CHGB, PTEN, MAP2c, or decreasing the level of SOD2 protein expression.ConclusionOur findings would help to further the mechanistic study of age-dependent anesthetic neurotoxicity and contribute to seek for effective protection in the developing brain under general anesthesia

    Emulating power spectra for pre- and post-reconstructed galaxy samples

    Full text link
    The small-scale linear information in galaxy samples typically lost during non-linear growth can be restored to a certain level by the density field reconstruction, which has been demonstrated for improving the precision of the baryon acoustic oscillations (BAO) measurements. As proposed in the literature, a joint analysis of the power spectrum before and after the reconstruction enables an efficient extraction of information carried by high-order statistics. However, the statistics of the post-reconstruction density field are difficult to model. In this work, we circumvent this issue by developing an accurate emulator for the pre-reconstructed, post-reconstructed, and cross power spectra (PpreP_{\rm pre}, PpostP_{\rm post}, PcrossP_{\rm cross}) up to k=0.5 h Mpc−1k=0.5~h~{\rm Mpc^{-1}} based on the \textsc{Dark Quest} N-body simulations. The accuracy of the emulator is at percent level, namely, the error of the emulated monopole and quadrupole of the power spectra is less than 1%1\% and 5%5\% of the ground truth, respectively. A fit to an example power spectra using the emulator shows that the constraints on cosmological parameters get largely improved using PpreP_{\rm pre}+PpostP_{\rm post}+PcrossP_{\rm cross} with kmax=0.25 h Mpc−1k_{\rm max}=0.25~h~{\rm Mpc^{-1}}, compared to that derived from PpreP_{\rm pre} alone, namely, the constraints on (Ωm\Omega_m, H0H_0, σ8\sigma_8) are tightened by ∼41%−55%\sim41 \%-55\%, and the uncertainties of the derived BAO and RSD parameters (α⊥\alpha_{\perp}, α∣∣\alpha_{||}, fσ8f\sigma_8) shrink by ∼28%−54%\sim 28\%-54\%, respectively. This highlights the complementarity among PpreP_{\rm pre}, PpostP_{\rm post} and PcrossP_{\rm cross}, which demonstrates the efficiency and practicability of a joint PpreP_{\rm pre}, PpostP_{\rm post} and PcrossP_{\rm cross} analysis for cosmological implications.Comment: 15 pages, 8 figures, 2 table

    Neurometabolic and structural alterations of medial septum and hippocampal CA1 in a model of post-operative sleep fragmentation in aged mice: a study combining 1H-MRS and DTI

    Get PDF
    Post-operative sleep disturbance is a common feature of elderly surgical patients, and sleep fragmentation (SF) is closely related to post-operative cognitive dysfunction (POCD). SF is characterized by sleep interruption, increased number of awakenings and sleep structure destruction, similar to obstructive sleep apnea (OSA). Research shows that sleep interruption can change neurotransmitter metabolism and structural connectivity in sleep and cognitive brain regions, of which the medial septum and hippocampal CA1 are key brain regions connecting sleep and cognitive processes. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method for the evaluation of neurometabolic abnormalities. Diffusion tensor imaging (DTI) realizes the observation of structural integrity and connectivity of brain regions of interest in vivo. However, it is unclear whether post-operative SF induces harmful changes in neurotransmitters and structures of the key brain regions and their contribution to POCD. In this study, we evaluated the effects of post-operative SF on neurotransmitter metabolism and structural integrity of medial septum and hippocampal CA1 in aged C57BL/6J male mice. The animals received a 24-h SF procedure after isoflurane anesthesia and right carotid artery exposure surgery. 1H-MRS results showed after post-operative SF, the glutamate (Glu)/creatine (Cr) and glutamate + glutamine (Glx)/Cr ratios increased in the medial septum and hippocampal CA1, while the NAA/Cr ratio decreased in the hippocampal CA1. DTI results showed post-operative SF decreased the fractional anisotropy (FA) of white matter fibers in the hippocampal CA1, while the medial septum was not affected. Moreover, post-operative SF aggravated subsequent Y-maze and novel object recognition performances accompanied by abnormal enhancement of glutamatergic metabolism signal. This study suggests that 24-h SF induces hyperglutamate metabolism level and microstructural connectivity damage in sleep and cognitive brain regions in aged mice, which may be involved in the pathophysiological process of POCD

    Support Vector Machine for Analyzing Contributions of Brain Regions During Task-State fMRI

    Get PDF
    The mainstream method used for the analysis of task functional Magnetic Resonance Imaging (fMRI) data, is to obtain task-related active brain regions based on generalized linear models. Machine learning as a data-driven technical method is increasingly used in fMRI data analysis. The language task data, including math task and story task, of the Human Connectome Project (HCP) was used in this work. We chose a linear support vector machine as a classifier to classify math and story tasks and compared them with the activated brain regions of a SPM statistical analysis. As a result, 13 of the 25 regions used for classification in SVM were activated regions, and 12 were non-activated regions. In particular, the right Paracentral Lobule and right Rolandic Operculum which belong to non-activated regions, contributed most to the classification. Therefore, the differences found in machine learning can provide a new understanding of the physiological mechanisms of brain regions under different tasks

    The Neuroprotective Effect of Astaxanthin on Pilocarpine-Induced Status Epilepticus in Rats

    Get PDF
    Cognitive dysfunction is one of the serious complications induced by status epilepticus (SE), which has a significant negative impact on patients’ quality of life. Previous studies demonstrated that the pathophysiological changes after SE such as oxidative stress, inflammatory reaction contribute to neuronal damage. A recent study indicated that preventive astaxanthin (AST) alleviated epilepsy-induced oxidative stress and neuronal apoptosis in the brain. In the present study, rats were treated with vehicle or AST 1 h after SE onset and were injected once every other day for 2 weeks (total of seven times). The results showed that the cognitive function in SE rats was significantly impaired, and AST treatment improved cognitive function in the Morris water maze (MWM). Magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining showed obvious damage in the hippocampus of SE rats, and AST alleviated the damage. Subsequently, we evaluated the effect of AST on relative pathophysiology to elucidate the possible mechanisms. To evaluate the oxidative stress, the expression of malondialdehyde (MDA) and superoxide dismutase (SOD) in plasma were detected using commercially available kits. NADPH oxidase-4 (Nox-4), p22phox, NF-E2-related factor 2 (Nrf-2), heme oxygenase 1 (Ho-1) and sod1 in the parahippocampal cortex and hippocampus were detected using western blot and real-time polymerase chain reaction (RT-PCR). The levels of MDA in plasma and Nox-4 and p22phox in the brain increased in SE rats, and the levels of SOD in plasma and Nrf-2, Ho-1 and sod1 in the brain decreased. Treatment with AST alleviated these changes. We also detected the levels of inflammatory mediators like cyclooxygenase-2 (cox-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and NF-κB phosphorylation p65 (p-p65)/p65 in the brain. The inflammatory reaction was significantly activated in the brain of SE rats, and AST alleviated neuroinflammation. We detected the levels of p-Akt, Akt, B-cell lymphoma-2 (Bcl-2), Bax, cleaved caspase-3, and caspase-3 in the parahippocampal cortex and hippocampus using western blot. The levels of p-Akt/Akt and Bcl-2 decreased in SE rats, Bax and cleaved caspase-3/caspase-3 increased, while AST alleviated these changes. The present study indicated that AST exerted an reobvious neuroprotective effect in pilocarpine-induced SE rats
    • …
    corecore