117 research outputs found

    InversionNet3D: Efficient and Scalable Learning for 3D Full Waveform Inversion

    Full text link
    Seismic full-waveform inversion (FWI) techniques aim to find a high-resolution subsurface geophysical model provided with waveform data. Some recent effort in data-driven FWI has shown some encouraging results in obtaining 2D velocity maps. However, due to high computational complexity and large memory consumption, the reconstruction of 3D high-resolution velocity maps via deep networks is still a great challenge. In this paper, we present InversionNet3D, an efficient and scalable encoder-decoder network for 3D FWI. The proposed method employs group convolution in the encoder to establish an effective hierarchy for learning information from multiple sources while cutting down unnecessary parameters and operations at the same time. The introduction of invertible layers further reduces the memory consumption of intermediate features during training and thus enables the development of deeper networks with more layers and higher capacity as required by different application scenarios. Experiments on the 3D Kimberlina dataset demonstrate that InversionNet3D achieves state-of-the-art reconstruction performance with lower computational cost and lower memory footprint compared to the baseline

    Influence of Salvia miltiorrhizae on the Mesenteric Lymph Node of Rats with Severe Acute Pancreatitis or Obstructive Jaundice

    Get PDF
    Objective. To observe the effect of salvia miltiorrhizae injection on inflammatory mediator levels and mesenteric lymph nodes in severe acute pancreatitis (SAP) and obstructive jaundice (OJ) rats and explore the protective mechanism of salvia miltiorrhizae on the lymph nodes of these rats. Methods. A total of 288 rats were used in SAP-associated and OJ-associated experiments. The rats were randomly divided into sham-operated group, model control group, and treated group. At various time points after operation, the pathological changes in mesenteric lymph nodes of rats in each group were observed, respectively. Results. The pathological severity scores in lymph nodes of SAP rats in treated group were significantly lower than those in model control group (P < .05) while the pathological changes in lymph nodes of OJ rats in treated group also showed varying degrees of mitigation. Conclusion. Salvia miltiorrhizae can exert protective effects on the lymph nodes of SAP or OJ rats via a mechanism that is associated with reducing the contents of inflammatory mediators in blood

    Antagonistic Actions of Juvenile Hormone and 20-Hydroxyecdysone Within the Ring Gland Determine Developmental Transitions in \u3cem\u3eDrosophila\u3c/em\u3e

    Get PDF
    In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of Drosophila larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene Kr-h1 in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of Kr-h1 in the PG inhibit ecdysteriod biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in Drosophila. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis

    Intragenic DNA Methylation Regulates Insect Gene Expression and Reproduction through the MBD/Tip60 Complex

    Get PDF
    DNA methylation is an important epigenetic modification. However, the regulations and functions of insect intragenic DNA methylation remain unknown. Here, we demonstrate that a regulatory mechanism involving intragenic DNA methylation controls ovarian and embryonic developmental processes in Bombyx mori. In B. mori, DNA methylation is found near the transcription start site (TSS) of ovarian genes. By promoter activity analysis, we observed that 5′ UTR methylation enhances gene expression. Moreover, methyl-DNA-binding domain protein 2/3 (MBD2/3) binds to the intragenic methyl-CpG fragment and recruits acetyltransferase Tip60 to promote histone H3K27 acetylation and gene expression. Additionally, genome-wide analyses showed that the peak of H3K27 acetylation appears near the TSS of methyl-modified genes, and DNA methylation is enriched in genes involved in protein synthesis in the B. mori ovary, with MBD2/3 knockdown resulting in decreased fecundity. These data uncover a mechanism of gene body methylation for regulating insect gene expression and reproduction

    Influence of Salvia miltiorrhizae

    Full text link

    BmILF and I-motif Structure Are Involved in Transcriptional Regulation of \u3cem\u3eBmPOUM2\u3c/em\u3e in \u3cem\u3eBombyx mori\u3c/em\u3e

    Get PDF
    Guanine-rich and cytosine-rich DNA can form four-stranded DNA secondary structures called G-quadruplex (G4) and i-motif, respectively. These structures widely exist in genomes and play important roles in transcription, replication, translation and protection of telomeres. In this study, G4 and i-motif structures were identified in the promoter of the transcription factor gene BmPOUM2, which regulates the expression of the wing disc cuticle protein gene (BmWCP4) during metamorphosis. Disruption of the i-motif structure by base mutation, anti-sense oligonucleotides (ASOs) or inhibitory ligands resulted in significant decrease in the activity of the BmPOUM2 promoter. A novel i-motif binding protein (BmILF) was identified by pull-down experiment. BmILF specifically bound to the i-motif and activated the transcription of BmPOUM2. The promoter activity of BmPOUM2 was enhanced when BmILF was over-expressed and decreased when BmILF was knocked-down by RNA interference. This study for the first time demonstrated that BmILF and the i-motif structure participated in the regulation of gene transcription in insect metamorphosis and provides new insights into the molecular mechanism of the secondary structures in epigenetic regulation of gene transcription

    Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction

    Get PDF
    IntroductionSpodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects.MethodsHere, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction.ResultsProteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction.DiscussionOur findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota

    Identification, Expression and Target Gene Analyses of MicroRNAs in Spodoptera litura

    Get PDF
    MicroRNAs (miRNAs) are small RNAs widely present in animals and plants and involved in post-transcriptional regulation of gene transcripts. In this study we identified and validated 58 miRNAs from an EST dataset of Spodoptera litura based on the computational and experimental analysis of sequence conservation and secondary structure of miRNA by comparing the miRNA sequences in the miRbase. RT-PCR was conducted to examine the expression of these miRNAs and stem-loop RT-PCR assay was performed to examine expression of 11 mature miRNAs (out of the 58 putative miRNA) that showed significant changes in different tissues and stages of the insect development. One hundred twenty eight possible target genes against the 11 miRNAs were predicted by using computational methods. Binding of one miRNA (sli-miR-928b) with the three possible target mRNAs was confirmed by Southern blotting, implying its possible function in regulation of the target genes
    corecore