106 research outputs found

    CLUSTEREASY: A Program for Simulating Scalar Field Evolution on Parallel Computers

    Full text link
    We describe a new, parallel programming version of the scalar field simulation program LATTICEEASY. The new C++ program, CLUSTEREASY, can simulate arbitrary scalar field models on distributed-memory clusters. The speed and memory requirements scale well with the number of processors. As with the serial version of LATTICEEASY, CLUSTEREASY can run simulations in one, two, or three dimensions, with or without expansion of the universe, with customizable parameters and output. The program and its full documentation are available on the LATTICEEASY website at http://www.science.smith.edu/departments/Physics/fstaff/gfelder/latticeeasy/. In this paper we provide a brief overview of what CLUSTEREASY does and the ways in which it does and doesn't differ from the serial version of LATTICEEASY.Comment: 3 pages, 1 figur

    CurvedLand: An Applet for Illustrating Curved Geometry without Embedding

    Get PDF
    We have written a Java applet to illustrate the meaning of curved geometry. The applet provides a mapping interface similar to MapQuest or Google Maps; features include the ability to navigate through a space and place permanent point objects and/or shapes at arbitrary positions. The underlying two-dimensional space has a constant, positive curvature, which causes the apparent paths and shapes of the objects in the map to appear distorted in ways that change as you view them from different relative angles and distances.Comment: 4 page

    Nonlinear Inflaton Fragmentation after Preheating

    Get PDF
    We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly non-gaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in configuration space reveals that nonlinear interactions generate non-gaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop growing and begin to expand. The subsequent dynamics is determined by expansion and superposition of the scalar waves originating from the peaks. Multiple wave superposition results in phase mixing and turbulent wave dynamics. Thus, the short intermediate stage is defined by the formation, expansion and collision of bubble-like field inhomogeneities associated with the peaks of the original gaussian field. This process is qualitatively similar to the bubble-like inflaton fragmentation that occurs during tachyonic preheating after hybrid or new inflation.Comment: 9 pages, 6 fig

    Inflaton Fragmentation After lambda phi^4 Inflation

    Get PDF
    We use lattice simulations to examine the detailed dynamics of inflaton fragmentation during and after preheating in λϕ4\lambda \phi^4 chaotic inflation. The dynamics are qualitatively similar to preheating after m2ϕ2m^2 \phi^2 inflation, involving the exponential growth and subsequent expansion and collision of bubble-like inhomogeneities of the inflaton and other scalar fields. During this stage fluctuations of the fields become strongly non-Gaussian. In the quartic theory, the conformal nature of the theory allows us to extend our simulations to much greater times than is possible for the quadratic model. With these longer simulations we have been able to determine the time scale on which Gaussianity is restored, which occurs after a time on the order of a thousand inflaton oscillations.Comment: 5 pages, 5 figure

    Gravitational Particle Production and the Moduli Problem

    Get PDF
    A theory of gravitational production of light scalar particles during and after inflation is investigated. We show that in the most interesting cases where long-wavelength fluctuations of light scalar fields can be generated during inflation, these fluctuations rather than quantum fluctuations produced after inflation give the dominant contribution to particle production. In such cases a simple analytical theory of particle production can be developed. Application of our results to the theory of quantum creation of moduli fields demonstrates that if the moduli mass is smaller than the Hubble constant then these fields are copiously produced during inflation. This gives rise to the cosmological moduli problem even if there is no homogeneous component of the classical moduli field in the universe. To avoid this version of the moduli problem it is necessary for the Hubble constant H during the last stages of inflation and/or the reheating temperature T_R after inflation to be extremely small.Comment: LaTeX,7 pages, 1 figure. Minor correction

    Cosmology With Negative Potentials

    Get PDF
    We investigate cosmological evolution in models where the effective potential V(\phi) may become negative for some values of the field \phi. Phase portraits of such theories in space of variables (\phi,\dot\phi,H) have several qualitatively new features as compared with phase portraits in the theories with V(\phi) > 0. Cosmological evolution in models with potentials with a "stable" minimum at V(\phi)<0 is similar in some respects to the evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then it contracts to a singularity with properties that are practically independent of V(\phi). We apply our methods to investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario. We propose several modifications of this scenario and conclude that the best way to improve it is to add a usual stage of inflation after the singularity and use that inflationary stage to generate perturbations in the standard way.Comment: 51 page, 20 figure

    A Longitudinal Study of Engineering Student Performance and Retention. V. Comparisons with Traditionally-Taught Students

    Get PDF
    In a longitudinal study at North Carolina State University, a cohort of students took five chemical engineering courses taught by the same instructor in five consecutive semesters. The courses made extensive use of active and cooperative learning and a variety of other techniques designed to address a broad spectrum of learning styles. Previous reports on the study summarized the instructional methods used in the experimental course sequence, described the performance of the cohort in the introductory chemical engineering course, and examined performance and attitude differences between students from rural and urban backgrounds and between male and female students.1–4 This paper compares outcomes for the experimental cohort with outcomes for students in a traditionally‐taught comparison group. The experimental group outperformed the comparison group on a number of measures, including retention and graduation in chemical engineering, and many more of the graduates in this group chose to pursue advanced study in the field. Since the experimental instructional model did not require small classes (the smallest of the experimental classes had 90 students) or specially equipped classrooms, it should be adaptable to any engineering curriculum at any institution

    The Effects of Personality Type on Engineering Student Performance and Attitudes

    Get PDF
    The Myers‐Briggs Type Indicator¼ (MBTI) was administered to a group of 116 students taking the introductory chemical engineering course at North Carolina State University. That course and four subsequent chemical engineering courses were taught in a manner that emphasized active and cooperative learning and inductive presentation of course material. Type differences in various academic performance measures and attitudes were noted as the students progressed through the curriculum. The observations were generally consistent with the predictions of type theory, and the experimental instructional approach appeared to improve the performance of MBTI types (extraverts, sensors, and feelers) found in previous studies to be disadvantaged in the engineering curriculum. The conclusion is that the MBTI is a useful tool for helping engineering instructors and advisors to understand their students and to design instruction that can benefit all of them

    Equation of state and Beginning of Thermalization After Preheating

    Get PDF
    We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a non-monotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10^(-35) s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of efoldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications for the theory of modulated perturbations from preheating. We finally argue that many questions of the thermal history of the universe should be addressed in terms of pre-thermalization, illustrating this point with a calculation of perturbative production of gravitinos immediately after chaotic inflation. We also highlight the effects of three-legs inflaton interactions on the dynamics of preheating and thermalization in an expanding universe.Comment: 15 pages, 13 figure

    BRANECODE: A Program for Simulations of Braneworld Dynamics

    Full text link
    We describe an algorithm and a C++ implementation that we have written and made available for calculating the fully nonlinear evolution of 5D braneworld models with scalar fields. Bulk fields allow for the stabilization of the extra space. However, they complicate the dynamics of the system, so that analytic calculations (performed within an effective 4D theory) are typically only reliable close to stabilized configurations or when the evolution of the extra space is negligible. In the general case, a numerical study of the 5D equations is necessary, and the algorithm and code we describe are the first ones designed for this task. The program and its full documentation are available on the Web at http://www.cita.utoronto.ca/~jmartin/BRANECODE/. In this paper we provide a brief overview of what the program does and how to use it.Comment: 5 pages, 2 figure
    • 

    corecore