1,823 research outputs found
Microwave Near-Field Imaging of Electric Fields in a Superconducting Microstrip Resonator
We describe the use of a cryogenic near-field scanning microwave microscope
to image microwave electric fields from superconducting and normal-metal
microstrip resonators. The microscope employs an open-ended coaxial probe and
operates from 77 to 300 K in the 0.01-20 GHz frequency range with a spatial
resolution of about 200 mm. We describe the operation of the system and present
microwave images of Cu and Tl2Ba2CaCu2O8 microstrip resonators, showing
standing wave patterns at the fundamental and second harmonic frequencies.Comment: 9 pages, 3 eps figure
On narrowing coated conductor film: emergence of granularity-induced field hysteresis of transport critical current
Critical current density Jc in polycrystalline or granular superconducting
material is known to be hysteretic with applied field H due to the focusing of
field within the boundary between adjacent grains. This is of concern in the
so-called coated conductors wherein superconducting film is grown on a
granular, but textured surface of a metal substrate. While previous work has
mainly been on Jc determined using induced or magnetization currents, the
present work utilizes transport current via an applied potential in strip
geometry. It is observed that the effect is not as pronounced using transport
current, probably due to a large difference in criterion voltage between the
two types of measurements. However, when the films are narrowed by patterning
into 200-, 100-, or 80-micron, the hysteresis is clearly seen, because of the
forcing of percolation across higher-angle grain boundaries. This effect is
compared for films grown on ion-beam-assisted-deposited (IBAD) YSZ substrate
and those grown on rolling-assisted-biaxially-textures substrates (RABiTS)
which have grains that are about ten times larger. The hysteresis is more
pronounced for the latter, which is more likely to have a weak grain boundary
spanning the width of the microbridge. This is also of concern to applications
in which coated conductors will be striated in order to reduce of AC losses.Comment: text-only: 10 pages, plus 5 figures on 5 page
Frequency Following Imaging of Electric Fields from Resonant Superconducting Devices using a Scanning Near-Field Microwave Microscope
We have developed a scanning near-field microwave microscope that operates at
cryogenic temperatures. Our system uses an open-ended coaxial probe with a 200
mm inner conductor diameter and operates from 77 to 300 K in the 0.01-20 GHz
frequency range. In this paper, we present microwave images of the electric
field distribution above a Tl2Ba2CaCu2O8 microstrip resonator at 77 K, measured
at several heights. In addition, we describe the use of a frequency-following
circuit to study the influence of the probe on the resonant frequency of the
device.Comment: 4 pages, postscript file with 6 figures conference proceeding for the
Applied Superconductivity Conference 199
Low Power Superconducting Microwave Applications and Microwave Microscopy
We briefly review some non-accelerator high-frequency applications of
superconductors. These include the use of high-Tc superconductors in front-end
band-pass filters in cellular telephone base stations, the High Temperature
Superconductor Space Experiment, and high-speed digital electronics. We also
present an overview of our work on a novel form of near-field scanning
microscopy at microwave frequencies. This form of microscopy can be used to
investigate the microwave properties of metals and dielectrics on length scales
as small as 1 mm. With this microscope we have demonstrated quantitative
imaging of sheet resistance and topography at microwave frequencies. An
examination of the local microwave response of the surface of a heat-treated
bulk Nb sample is also presented.Comment: 11 pages, including 6 figures. Presented at the Eight Workshop on RF
Superconductivity. To appear in Particle Accelerator
Near-Field Scanning Microwave Microscopy: Measuring Local Microwave Properties and Electric Field Distributions
We describe the near-field microwave microscopy of microwave devices on a
length scale much smaller than the wavelength used for imaging. Our microscope
can be operated in two possible configurations, allowing a quantitative study
of either material properties or local electric fields.Comment: 4 pages, 8 figures, minor corrections to text and 2 figure
Near-Field Microwave Microscopy of Materials Properties
Near-field microwave microscopy has created the opportunity for a new class
of electrodynamics experiments of materials. Freed from the constraints of
traditional microwave optics, experiments can be carried out at high spatial
resolution over a broad frequency range. In addition, the measurements can be
done quantitatively so that images of microwave materials properties can be
created. We review the five major types of near-field microwave microscopes and
discuss our own form of microscopy in detail. Quantitative images of microwave
sheet resistance, dielectric constant, and dielectric tunability are presented
and discussed. Future prospects for near-field measurements of microwave
electrodynamic properties are also presented.Comment: 31 pages, 9 figures, lecture given at the 1999 NATO ASI on Microwave
Superconductivity Changes suggested by editor, including full reference
Superconducting Material Diagnostics using a Scanning Near-Field Microwave Microscope
We have developed scanning near-field microwave microscopes which can image
electrodynamic properties of superconducting materials on length scales down to
about 2 m. The microscopes are capable of quantitative imaging of sheet
resistance of thin films, and surface topography. We demonstrate the utility of
the microscopes through images of the sheet resistance of a YBa2Cu3O7-d thin
film wafer, images of bulk Nb surfaces, and spatially resolved measurements of
Tc of a YBa2Cu3O7-d thin film. We also discuss some of the limitations of the
microscope and conclude with a summary of its present capabilities.Comment: 6 pages with 9 figures, Proceedings of the Applied Superconductivity
Conference 199
- …