4 research outputs found

    The FGFR receptor family

    No full text

    Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis

    Full text link
    The liver's remarkable regenerative capacity is orchestrated by several growth factors and cytokines. Fibroblast growth factor receptor 3 (Fgfr3) is frequently overexpressed in hepatocellular carcinoma and promotes cancer aggressiveness, whereas its role in liver homeostasis, repair and regeneration is unknown. We show here that Fgfr3 is expressed by hepatocytes in the healthy liver. Its major ligand, Fgf9, is mainly expressed by non-parenchymal cells and upregulated upon injury. Mice lacking Fgfr3 in hepatocytes exhibit increased tissue necrosis after acute toxin treatment and more excessive fibrosis after long-term injury. This was not a consequence of immunological alterations in the non-injured liver as revealed by comprehensive flow cytometry analysis. Rather, loss of Fgfr3 altered the expression of metabolic and pro-fibrotic genes in hepatocytes. These results identify a paracrine Fgf9-Fgfr3 signaling pathway that protects from toxin-induced cell death and the resulting liver fibrosis and suggests a potential use of FGFR3 ligands for therapeutic purposes

    The ubiquitin ligase Uhrf2 is a master regulator of cholesterol biosynthesis and is essential for liver regeneration

    No full text
    Fibroblast growth factors (FGFs) are key regulators of the remarkable regenerative capacity of the liver. Mice lacking FGF receptors 1 and 2 (Fgfr1 and Fgfr2) in hepatocytes are hypersensitive to cytotoxic injury during liver regeneration. Using these mice as a model for impaired liver regeneration, we identified a critical role for the ubiquitin ligase Uhrf2 in protecting hepatocytes from bile acid accumulation during liver regeneration. During regeneration after partial hepatectomy, Uhrf2 expression increased in an FGFR-dependent manner, and Uhrf2 was more abundant in the nuclei of liver cells in control mice compared with FGFR-deficient mice. Hepatocyte-specific Uhrf2 knockout or nanoparticle-mediated Uhrf2 knockdown caused extensive liver necrosis and impaired hepatocyte proliferation after partial hepatectomy, resulting in liver failure. In cultured hepatocytes, Uhrf2 interacted with several chromatin remodeling proteins and suppressed the expression of cholesterol biosynthesis genes. In vivo, the loss of Uhrf2 resulted in cholesterol and bile acid accumulation in the liver during regeneration. Treatment with a bile acid scavenger rescued the necrotic phenotype, hepatocyte proliferation, and the regenerative capacity of the liver in Uhrf2-deficient mice subjected to partial hepatectomy. Our results identify Uhrf2 as a key target of FGF signaling in hepatocytes and its essential function in liver regeneration and highlight the importance of epigenetic metabolic regulation in this process.ISSN:1945-0877ISSN:1937-9145ISSN:1525-888
    corecore