22 research outputs found
CO Infrared Phonon Modes in Interstellar Ice Mixtures
CO ice is an important reservoir of carbon and oxygen in star and planet
forming regions. Together with water and CO, CO sets the physical and
chemical characteristics of interstellar icy grain mantles, including
desorption and diffusion energies for other ice constituents. A detailed
understanding of CO ice spectroscopy is a prerequisite to characterize
CO interactions with other volatiles both in interstellar ices and in
laboratory experiments of interstellar ice analogs. We report laboratory
spectra of the CO longitudinal optical (LO) phonon mode in pure CO ice
and in CO ice mixtures with HO, CO, O components. We show that the
LO phonon mode position is sensitive to the mixing ratio of various ice
components of astronomical interest. In the era of JWST, this characteristic
could be used to constrain interstellar ice compositions and morphologies. More
immediately, LO phonon mode spectroscopy provides a sensitive probe of ice
mixing in the laboratory and should thus enable diffusion measurements with
higher precision than has been previously possible
CO diffusion and desorption kinetics in CO ices
Diffusion of species in icy dust grain mantles is a fundamental process that
shapes the chemistry of interstellar regions; yet measurements of diffusion in
interstellar ice analogs are scarce. Here we present measurements of CO
diffusion into CO ice at low temperatures (T=11--23~K) using CO
longitudinal optical (LO) phonon modes to monitor the level of mixing of
initially layered ices. We model the diffusion kinetics using Fick's second law
and find the temperature dependent diffusion coefficients are well fit by an
Arrhenius equation giving a diffusion barrier of 300 40 K. The low
barrier along with the diffusion kinetics through isotopically labeled layers
suggest that CO diffuses through CO along pore surfaces rather than through
bulk diffusion. In complementary experiments, we measure the desorption energy
of CO from CO ices deposited at 11-50 K by temperature-programmed
desorption (TPD) and find that the desorption barrier ranges from 1240 90
K to 1410 70 K depending on the CO deposition temperature and
resultant ice porosity. The measured CO-CO desorption barriers demonstrate
that CO binds equally well to CO and HO ices when both are compact. The
CO-CO diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on
the binding environment during diffusion. The diffusion-desorption ratio is
consistent with the above hypothesis that the observed diffusion is a surface
process and adds to previous experimental evidence on diffusion in water ice
that suggests surface diffusion is important to the mobility of molecules
within interstellar ices
CO ice photodesorption: A wavelength-dependent study
UV-induced photodesorption of ice is a non-thermal evaporation process that
can explain the presence of cold molecular gas in a range of interstellar
regions. Information on the average UV photodesorption yield of astrophysically
important ices exists for broadband UV lamp experiments. UV fields around
low-mass pre-main sequence stars, around shocks and in many other astrophysical
environments are however often dominated by discrete atomic and molecular
emission lines. It is therefore crucial to consider the wavelength dependence
of photodesorption yields and mechanisms. In this work, for the first time, the
wavelength-dependent photodesorption of pure CO ice is explored between 90 and
170 nm. The experiments are performed under ultra high vacuum conditions using
tunable synchrotron radiation. Ice photodesorption is simultaneously probed by
infrared absorption spectroscopy in reflection mode of the ice and by
quadrupole mass spectrometry of the gas phase. The experimental results for CO
reveal a strong wavelength dependence directly linked to the vibronic
transition strengths of CO ice, implying that photodesorption is induced by
electronic transition (DIET). The observed dependence on the ice absorption
spectra implies relatively low photodesorption yields at 121.6 nm (Ly-alpha),
where CO barely absorbs, compared to the high yields found at wavelengths
coinciding with transitions into the first electronic state of CO (singulet Pi
at 150 nm); the CO photodesorption rates depend strongly on the UV profiles
encountered in different star formation environments.Comment: 5 pages, 2 figures, published in ApJ
Indirect ultraviolet photodesorption from CO:N2 binary ices - an efficient grain-gas process
UV ice photodesorption is an important non-thermal desorption pathway in many
interstellar environments that has been invoked to explain observations of cold
molecules in disks, clouds and cloud cores. Systematic laboratory studies of
the photodesorption rates, between 7 and 14 eV, from CO:N2 binary ices, have
been performed at the DESIRS vacuum UV beamline of the synchrotron facility
SOLEIL. The photodesorption spectral analysis demonstrates that the
photodesorption process is indirect, i.e. the desorption is induced by a photon
absorption in sub-surface molecular layers, while only surface molecules are
actually desorbing. The photodesorption spectra of CO and N2 in binary ices
therefore depend on the absorption spectra of the dominant species in the
subsurface ice layer, which implies that the photodesorption efficiency and
energy dependence are dramatically different for mixed and layered ices
compared to pure ices. In particular, a thin (1-2 ML) N2 ice layer on top of CO
will effectively quench CO photodesorption, while enhancing N2 photodesorption
by a factors of a few (compared to the pure ices) when the ice is exposed to a
typical dark cloud UV field, which may help to explain the different
distributions of CO and N2H+ in molecular cloud cores. This indirect
photodesorption mechanism may also explain observations of small amounts of
complex organics in cold interstellar environments.Comment: 21 pages 5 figure
Wavelength-Dependent UV Photodesorption of Pure and Ices
Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: and are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption.
Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure and thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic and isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: photodesorption mainly occurs through excitation of the state and subsequent desorption of surface molecules. The observed vibronic structure in the photodesorption spectrum, together with the absence of formation, supports that the photodesorption mechanism of is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of and integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between and photodesorbed molecules per incoming photon.Astronom
Desorption Kinetics and Binding Energies of Small Hydrocarbons
Small hydrocarbons are an important organic reservoir in protostellar and protoplanetary environments. Constraints on desorption temperatures and binding energies of such hydrocarbons are needed for accurate predictions of where these molecules exist in the ice versus gas phase during the different stages of star and planet formation. Through a series of temperature programmed desorption experiments, we constrain the binding energies of 2- and 3-carbon hydrocarbons (C_2H_2—acetylene, C_2H_4—ethylene, C_2H_6—ethane, C_3H_4—propyne, C_3H_6—propene, and C_3H_8—propane) to 2200–4200 K in the case of pure amorphous ices, to 2400–4400 K on compact amorphous H_2O, and to 2800–4700 K on porous amorphous H_2O. The 3-carbon hydrocarbon binding energies are always larger than the 2-carbon hydrocarbon binding energies. Within the 2- and 3-carbon hydrocarbon families, the alkynes (i.e., least-saturated) hydrocarbons exhibit the largest binding energies, while the alkane and alkene binding energies are comparable. Binding energies are ~5%–20% higher on water ice substrates compared to pure ices, which is a small increase compared to what has been measured for other volatile molecules such as CO and N_2. Thus in the case of hydrocarbons, H_2O has a less pronounced effect on sublimation front locations (i.e., snowlines) in protoplanetary disks
Indirect Ultraviolet Photodesorption from CO:N2 Binary Ices — An Efficient Grain-Gas Process
Ultraviolet (UV) ice photodesorption is an important non-thermal desorption pathway in many interstellar environments that has been invoked to explain observations of cold molecules in disks, clouds, and cloud cores. Systematic laboratory studies of the photodesorption rates, between 7 and 14 eV, from CO:N2 binary ices, have been performed at the DESIRS vacuum UV beamline of the synchrotron facility SOLEIL. The photodesorption spectral analysis demonstrates that the photodesorption process is indirect, i.e., the desorption is induced by a photon absorption in sub-surface molecular layers, while only surface molecules are actually desorbing. The photodesorption spectra of CO and N2 in binary ices therefore depend on the absorption spectra of the dominant species in the sub-surface ice layer, which implies that the photodesorption efficiency and energy dependence are dramatically different for mixed and layered ices compared with pure ices. In particular, a thin (1-2 ML) N2 ice layer on top of CO will effectively quench CO photodesorption, while enhancing N2 photodesorption by a factor of a few (compared with the pure ices) when the ice is exposed to a typical dark cloud UV field, which may help to explain the different distributions of CO and N2H+ in molecular cloud cores. This indirect photodesorption mechanism may also explain observations of small amounts of complex organics in cold interstellar environments.Astronom
Complex molecule formation around massive young stellar objects
Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCHand CH3CN seem to always trace a lukewarm (T ≈ 60 K) and a hot (T> 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations off our representative complex organics - CH3CCH, CH3CN, CH3OCH3 and CH3CHO- in a large sample of complex molecule hosts mined from the literature.Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history