6 research outputs found

    Forecasting Time-Series with Correlated Seasonality

    Get PDF
    A new approach is proposed for forecasting a time series with multiple seasonal patterns. A state space model is developed for the series using the single source of error approach which enables us to develop explicit models for both additive and multiplicative seasonality. Parameter estimates may be obtained using methods adapted from general exponential smoothing, although the Kalman filter may also be used. The proposed model is used to examine hourly and daily patterns in hourly data for both utility loads and traffic flows. Our formulation provides a model for several existing seasonal methods and also provides new options, which result in superior forecasting performance over a range of prediction horizons. The approach is likely to be useful in a wide range of applications involving both high and low frequency data, and it handles missing values in a straightforward manner.Exponential smoothing; Holt-Winters; Seasonality; Structural time series model

    Forecasting time-series with correlated seasonality

    Get PDF
    A new approach to forecasting seasonal data is proposed where seasonal terms can be updated using the most recent relevant information. It was developed to handle features encountered in hourly electricity load data and daily hospital admissions data. The associated state space model is estimated with methods adapted from exponential smoothing, although the Kalman filter may also be used. It nests existing seasonal models and outperforms them over a range of prediction horizons on the data. The approach is likely to be useful in a wide range of applications involving both high and low frequency data

    Forecasting time series with multiple seasonal patterns

    Full text link
    A new approach is proposed for forecasting a time series with multiple seasonal patterns. A state space model is developed for the series using the innovations approach which enables us to develop explicit models for both additive and multiplicative seasonality. Parameter estimates may be obtained using methods from exponential smoothing. The proposed model is used to examine hourly and daily patterns in hourly data for both utility loads and traffic flows. Our formulation provides a model for several existing seasonal methods and also provides new options, which result in superior forecasting performance over a range of prediction horizons. In particular, seasonal components can be updated more frequently than once during a seasonal cycle. The approach is likely to be useful in a wide range of applications involving both high and low frequency data, and it handles missing values in a straightforward manner.

    Forecasting time-series with correlated seasonality

    Full text link
    A new approach to forecasting seasonal data is proposed where seasonal terms can be updated using the most recent relevant information. It was developed to handle features encountered in hourly electricity load data and daily hospital admissions data. The associated state space model is estimated with methods adapted from exponential smoothing, although the Kalman filter may also be used. It nests existing seasonal models and outperforms them over a range of prediction horizons on the data. The approach is likely to be useful in a wide range of applications involving both high and low frequency data
    corecore