7 research outputs found

    Pinus hartwegii Lindl. treeline ecotone: structure and altitudinal limits at Nevado de Toluca, Mexico

    No full text
    Introducción: La complejidad del ecotono del límite superior del bosque de Pinus hartwegii puede funcionar como una barrera para la migración altitudinal. Objetivos: La estructura del bosque de P. hartwegii se caracterizó a través del ecotono de su límite superior en el Nevado de Toluca; además, se determinaron los posibles cambios en los límites altitudinales en los últimos 25 años. Materiales y métodos: Se determinaron la densidad arbórea, altura y diámetro normal de cada árbol, y la regeneración natural del bosque. Los límites altitudinales se determinaron mediante el método de la ventana móvil en imágenes de satélite de 1989 y 2014. Resultados y discusión: La densidad del arbolado se redujo entre 8 y 70 % en el gradiente altitudinal. Los límites altitudinales (3,980-4,130 m) no presentaron diferencias significativas ( P = 0.07) entre los años evaluados. El ecotono es de forma difusa, regulado por limitaciones al crecimiento. Esto implica que el bosque modificará su distribución altitudinal en función de los cambios ambientales, de acuerdo con su amplitud ecológica y la rapidez con que puedan establecerse nuevos individuos a mayores altitudes. Conclusión: Es importante establecer monitoreos, a largo plazo, para saber si la especie es realmente capaz de migrar altitudinalmente como resultado del incremento de temperatura ambiental

    Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions at √sNN = 2.76 TeV at the CERN Large Hadron Collider

    No full text
    Femtoscopic correlations of non-identical charged kaons (K+K−) are studied in Pb−Pb collisions at a center-of-mass energy per nucleon−nucleon collision sNN−−−√=2.76 TeV by ALICE at the LHC. One-dimensional K+K− correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The Lednický and Luboshitz interaction model used in the K+K− analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980) and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K− correlation functions using the femtoscopic technique for the first time. The measured mass and width of the f0(980) resonance are consistent with other published measurements. The height of the ϕ(1020) meson peak present in the K+K− correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the ϕ(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by FSI could not be precisely quantified with data presented in this paper and will be assessed in future work

    Two-particle transverse momentum correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at LHC energies, provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Σ(1385)± resonance production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/c, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the Σ(1385)± particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/c. The first measurement of the Σ(1385)± resonance production at midrapidity in Pb-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, Λπ, as a function of the transverse momentum (pT) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For Σ(1385)±, a similar behaviour as K∗(892)0 is observed in data unlike the predictions of EPOS3 with afterburner

    Measurement of the lifetime and Λ separation energy of 3ΛH

    No full text
    The most precise measurements to date of the 3ΛH lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at √= 5.02 TeV collected by ALICE at the LHC. The 3ΛH is reconsNN structed via its charged two-body mesonic decay channel (3ΛH→ 3He + π− and the charge-conjugate process). The measured values τ=[253±11 (stat.)±6 (syst.)] ps and BΛ=[102±63 (stat.)±67 (syst.)] keV are compatible with predictions from effective field theories and confirm that the 3ΛH structure is consistent with a weakly-bound system

    Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb–Pb collision data at center-of-mass energy per nucleon–nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters RR = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and RR = 0.2, 0.4, 0.6 in central (0–10\%), semi-central (30–50\%), and peripheral (60–80\%) Pb–Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT40p_{\rm T} \ge 40 GeV/cc in central collisions at a resolution parameter of RR = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at RR = 0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models.The ALICE Collaboration reports a new differential measurement of inclusive jet suppression using pp and Pb-Pb collision data at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. Charged-particle jets are reconstructed using the anti-kTk_{\rm T} algorithm with resolution parameters R=R = 0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and R=R = 0.2, 0.4, 0.6 in central (0-10%), semi-central (30-50%), and peripheral (60-80%) Pb-Pb collisions. The analysis uses a novel approach based on machine learning to mitigate the influence of jet background in central heavy-ion collisions, which enables measurements of inclusive jet suppression for jet pT40p_{\rm T} \geq 40 GeV/cc in central collisions at a resolution parameter of R=0.6R = 0.6. This is the lowest value of jet pTp_{\rm T} achieved for inclusive jet measurements at R=0.6R=0.6 at the LHC, and is an important step for discriminating different models of jet quenching in the quark-gluon plasma. The transverse momentum spectra, nuclear modification factors, and derived cross section and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet quenching models with varying levels of agreement, demonstrating the effectiveness of this observable to discriminate between models

    Measurement of ψ (2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV with ALICE at the LHC

    No full text
    Production of inclusive charmonia in pp collisions at center-of-mass energy of √s = 13 TeV and p–Pb collisions at center-of-mass energy per nucleon pair of √sNN = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5 < ycms < 4.0 for pp collisions, and 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96 for p–Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η| < 1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations
    corecore