50 research outputs found

    Progressive Feature Self-reinforcement for Weakly Supervised Semantic Segmentation

    Full text link
    Compared to conventional semantic segmentation with pixel-level supervision, Weakly Supervised Semantic Segmentation (WSSS) with image-level labels poses the challenge that it always focuses on the most discriminative regions, resulting in a disparity between fully supervised conditions. A typical manifestation is the diminished precision on the object boundaries, leading to a deteriorated accuracy of WSSS. To alleviate this issue, we propose to adaptively partition the image content into deterministic regions (e.g., confident foreground and background) and uncertain regions (e.g., object boundaries and misclassified categories) for separate processing. For uncertain cues, we employ an activation-based masking strategy and seek to recover the local information with self-distilled knowledge. We further assume that the unmasked confident regions should be robust enough to preserve the global semantics. Building upon this, we introduce a complementary self-enhancement method that constrains the semantic consistency between these confident regions and an augmented image with the same class labels. Extensive experiments conducted on PASCAL VOC 2012 and MS COCO 2014 demonstrate that our proposed single-stage approach for WSSS not only outperforms state-of-the-art benchmarks remarkably but also surpasses multi-stage methodologies that trade complexity for accuracy. The code can be found at \url{https://github.com/Jessie459/feature-self-reinforcement}.Comment: Accepted by AAAI 202

    WMFormer++: Nested Transformer for Visible Watermark Removal via Implict Joint Learning

    Full text link
    Watermarking serves as a widely adopted approach to safeguard media copyright. In parallel, the research focus has extended to watermark removal techniques, offering an adversarial means to enhance watermark robustness and foster advancements in the watermarking field. Existing watermark removal methods mainly rely on UNet with task-specific decoder branches--one for watermark localization and the other for background image restoration. However, watermark localization and background restoration are not isolated tasks; precise watermark localization inherently implies regions necessitating restoration, and the background restoration process contributes to more accurate watermark localization. To holistically integrate information from both branches, we introduce an implicit joint learning paradigm. This empowers the network to autonomously navigate the flow of information between implicit branches through a gate mechanism. Furthermore, we employ cross-channel attention to facilitate local detail restoration and holistic structural comprehension, while harnessing nested structures to integrate multi-scale information. Extensive experiments are conducted on various challenging benchmarks to validate the effectiveness of our proposed method. The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin

    Cross-Modality High-Frequency Transformer for MR Image Super-Resolution

    Full text link
    Improving the resolution of magnetic resonance (MR) image data is critical to computer-aided diagnosis and brain function analysis. Higher resolution helps to capture more detailed content, but typically induces to lower signal-to-noise ratio and longer scanning time. To this end, MR image super-resolution has become a widely-interested topic in recent times. Existing works establish extensive deep models with the conventional architectures based on convolutional neural networks (CNN). In this work, to further advance this research field, we make an early effort to build a Transformer-based MR image super-resolution framework, with careful designs on exploring valuable domain prior knowledge. Specifically, we consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior, and establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution (LR) MR images. Comprehensive experiments on two datasets indicate that Cohf-T achieves new state-of-the-art performance
    corecore