56 research outputs found

    Low-Light Image Enhancement with Wavelet-based Diffusion Models

    Full text link
    Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration. To address these issues, we propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL. Specifically, we present a wavelet-based conditional diffusion model (WCDM) that leverages the generative power of diffusion models to produce results with satisfactory perceptual fidelity. Additionally, it also takes advantage of the strengths of wavelet transformation to greatly accelerate inference and reduce computational resource usage without sacrificing information. To avoid chaotic content and diversity, we perform both forward diffusion and reverse denoising in the training phase of WCDM, enabling the model to achieve stable denoising and reduce randomness during inference. Moreover, we further design a high-frequency restoration module (HFRM) that utilizes the vertical and horizontal details of the image to complement the diagonal information for better fine-grained restoration. Extensive experiments on publicly available real-world benchmarks demonstrate that our method outperforms the existing state-of-the-art methods both quantitatively and visually, and it achieves remarkable improvements in efficiency compared to previous diffusion-based methods. In addition, we empirically show that the application for low-light face detection also reveals the latent practical values of our method

    GAFlow: Incorporating Gaussian Attention into Optical Flow

    Full text link
    Optical flow, or the estimation of motion fields from image sequences, is one of the fundamental problems in computer vision. Unlike most pixel-wise tasks that aim at achieving consistent representations of the same category, optical flow raises extra demands for obtaining local discrimination and smoothness, which yet is not fully explored by existing approaches. In this paper, we push Gaussian Attention (GA) into the optical flow models to accentuate local properties during representation learning and enforce the motion affinity during matching. Specifically, we introduce a novel Gaussian-Constrained Layer (GCL) which can be easily plugged into existing Transformer blocks to highlight the local neighborhood that contains fine-grained structural information. Moreover, for reliable motion analysis, we provide a new Gaussian-Guided Attention Module (GGAM) which not only inherits properties from Gaussian distribution to instinctively revolve around the neighbor fields of each point but also is empowered to put the emphasis on contextually related regions during matching. Our fully-equipped model, namely Gaussian Attention Flow network (GAFlow), naturally incorporates a series of novel Gaussian-based modules into the conventional optical flow framework for reliable motion analysis. Extensive experiments on standard optical flow datasets consistently demonstrate the exceptional performance of the proposed approach in terms of both generalization ability evaluation and online benchmark testing. Code is available at https://github.com/LA30/GAFlow.Comment: To appear in ICCV-202

    Supervised Homography Learning with Realistic Dataset Generation

    Full text link
    In this paper, we propose an iterative framework, which consists of two phases: a generation phase and a training phase, to generate realistic training data and yield a supervised homography network. In the generation phase, given an unlabeled image pair, we utilize the pre-estimated dominant plane masks and homography of the pair, along with another sampled homography that serves as ground truth to generate a new labeled training pair with realistic motion. In the training phase, the generated data is used to train the supervised homography network, in which the training data is refined via a content consistency module and a quality assessment module. Once an iteration is finished, the trained network is used in the next data generation phase to update the pre-estimated homography. Through such an iterative strategy, the quality of the dataset and the performance of the network can be gradually and simultaneously improved. Experimental results show that our method achieves state-of-the-art performance and existing supervised methods can be also improved based on the generated dataset. Code and dataset are available at https://github.com/megvii-research/RealSH.Comment: Accepted by ICCV 202

    Implicit Identity Leakage: The Stumbling Block to Improving Deepfake Detection Generalization

    Full text link
    In this paper, we analyse the generalization ability of binary classifiers for the task of deepfake detection. We find that the stumbling block to their generalization is caused by the unexpected learned identity representation on images. Termed as the Implicit Identity Leakage, this phenomenon has been qualitatively and quantitatively verified among various DNNs. Furthermore, based on such understanding, we propose a simple yet effective method named the ID-unaware Deepfake Detection Model to reduce the influence of this phenomenon. Extensive experimental results demonstrate that our method outperforms the state-of-the-art in both in-dataset and cross-dataset evaluation. The code is available at https://github.com/megvii-research/CADDM.Comment: Accepted by CVPR 202
    • …
    corecore