6 research outputs found

    HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia

    No full text
    Limited, and underutilized, therapeutic options for acute stroke require new approaches to treatment. One such potential approach involves better understanding of innate immune response to brain injury such as acute focal cerebral ischemia. This includes understanding the temporal profile, and specificity, of Toll-like receptor 4 (TLR4) signaling in brain cell types, such as astrocytes, following focal cerebral ischemia. This study evaluated TLR4 signaling, and downstream mediators, in astrocytes, during acute and chronic phases post transient middle cerebral artery occlusion (MCAO). We also determined whether high mobility group box 1 (HMGB1), an endogenous TLR4 ligand, was sufficient to induce TLR4 signaling activation in astrocytes in vivo and in vitro. We injected HMGB1 into normal cortex, in vivo, and stimulated cultured astrocytes with HMGB1, in vitro, and determined TLR4, and downstream mediator, expression by immunohistochemistry. We found that expression of TLR4, and downstream mediators, such as inducible nitric oxide synthase (iNOS), occurs in penumbral astrocytes in acute and chronic phases after focal cerebral ischemia, but was undetectable in cortical astrocytes in the contralateral hemisphere. In addition, cortical injection of recombinant HMGB1 led to a trend towards an almost 2-fold increase in TLR4 expression in astrocytes surrounding the injection site. Consistent with these results, in vitro stimulation of the DI TNC1 astrocyte cell line, with recombinant HMGB1, led to increased TLR4 and iNOS message levels. These findings suggest that HMGB1, an endogenous TLR4 ligand, is an important physiological ligand for TLR4 signaling activation, in penumbral astrocytes, following acute and chronic ischemia and HMGB1 amplifies TLR4 signaling in astrocytes

    Sur1-Trpm4 cation channel expression in human cerebral infarcts

    Get PDF
    The nonselective monovalent cation channel transient receptor potential melastatin 4 (Trpm4) is transcriptionally upregulated in neural and vascular cells in animal models of brain infarction. It associates with sulfonylurea receptor 1 (Sur1) to form Sur1-Trpm4 channels, which have critical roles in cytotoxic edema, cell death, blood-brain barrier breakdown, and vasogenic edema. We examined Trpm4 expression in postmortem brain specimens from 15 patients who died within the first 31 days of the onset of focal cerebral ischemia. We found increased Trpm4 protein expression in all cases using immunohistochemistry; transcriptional upregulation was confirmed using in situ hybridization of Trpm4 messenger RNA. Transient receptor potential melastatin 4 colocalized and coassociated with Sur1 within ischemic endothelial cells and neurons. Coexpression of Sur1 and Trpm4 in necrotic endothelial cells was also associated with vasogenic edema indicated by upregulated perivascular tumor necrosis factor, extravasation of serum immunoglobulin G, and associated inflammation. Upregulated Trpm4 protein was present up to 1 month after the onset of cerebral ischemia. In a rat model of middle cerebral artery occlusion stroke, pharmacologic channel blockade by glibenclamide, a selective inhibitor of sulfonylurea receptor, mitigated perivascular tumor necrosis factor labeling. Thus, upregulated Sur1-Trpm4 channels and associated blood-brain barrier disruption and cerebral edema suggest that pharmacologic targeting of this channel may represent a promising therapeutic strategy for the clinical management of patients with cerebral ischemia.National Institute of Neurological Disorders and Stroke (K08NS089830-NS061808); National Heart, Lung, and Blood Institute (HL082517

    Microfluidic Model to Evaluate Astrocyte Activation in Penumbral Region following Ischemic Stroke

    No full text
    Stroke is one of the main causes of death in the US and post-stroke treatment options remain limited. Ischemic stroke is caused by a blood clot that compromises blood supply to the brain, rapidly leading to tissue death at the core of the infarcted area surrounded by a hypoxic and nutrient-starved region known as the penumbra. Recent evidence suggests that astrocytes in the penumbral region play a dual role in stroke response, promoting further neural and tissue damage or improving tissue repair depending on the microenvironment. Thus, astrocyte response in the hypoxic penumbra could promote tissue repair after stroke, salvaging neurons in the affected area and contributing to cognitive recovery. However, the complex microenvironment of ischemic stroke, characterized by gradients of hypoxia and nutrients, poses a unique challenge for traditional in vitro models, which in turn hinders the development of novel therapies. To address this challenge, we have developed a novel, polystyrene-based microfluidic device to model the necrotic and penumbral region induced by an ischemic stroke. We demonstrated that when subjected to hypoxia, and nutrient starvation, astrocytes within the penumbral region generated in the microdevice exhibited long-lasting, significantly altered signaling capacity including calcium signaling impairment

    Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deletion of some Toll-like receptors (TLRs) affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT), MyD88<sup>−/−</sup> and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO).</p> <p>Methods</p> <p>Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve) and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO.</p> <p>Results</p> <p>IL-6, keratinocyte chemoattractant (KC), granulocyte colony-stimulating factor (G-CSF) and IL-10 were significantly decreased in MyD88<sup>−/−</sup> mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88<sup>−/−</sup> mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. MyD88<sup>−/−</sup> mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO.</p> <p>Conclusions</p> <p>Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88<sup>−/−</sup> mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. The MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.</p
    corecore