338 research outputs found

    Empirical multi-wavelength prediction method for very high energy gamma-ray emitting BL Lacs

    Full text link
    Aim: We have collected the most complete multi-wavelength (6.06.0×1018cm6.0 - 6.0 \times 10^{-18} cm) dataset of very high energy (VHE) γ\gamma-ray emitting (TeV) BL Lacs, which are the most numerous extragalactic VHE sources. Using significant correlations between different bands, we aim to identify the best TeV BL Lac candidates that can be discovered by the current and next generation of imaging air Cherenkov telescopes. Methods: We formed five datasets from lower energy data, i.e. radio, mid-infrared, optical, X-rays, and GeV γ\gamma-ray, and five VHE γ\gamma-ray datasets to perform a correlation study between different bands and to construct the prediction method. The low energy datasets were averaged for individual sources, while the VHE γ\gamma-ray data were divided into subsets according to the flux state of the source. We then looked for significant correlations and determined their best-fit parameters. Using the best-fit parameters we predicted the level of VHE γ\gamma-ray flux for a sample of 182 BL Lacs, which have not been detected at TeV energies. We identified the most promising TeV BL Lac candidates based on the predicted VHE γ\gamma-ray flux for each source. Results: We found 14 significant correlations between radio, mid-infrared, optical, γ\gamma-ray, and VHE γ\gamma-ray bands. The correlation between optical and VHE γ\gamma-ray luminosity is established for the first time. We attribute this to the more complete sample and more accurate handling of host galaxy flux in our work. We found nine BL Lac candidates whose predicted VHE γ\gamma-ray flux is high enough for detection in less than 25 hours with current imaging air Cherenkov telescopes.Comment: 10 pages, 2 figures, 4 Table

    Quasi-periodicities of BL Lac Objects

    Get PDF
    We review the reports of possible year-long quasi-periodicities of BL Lac objects in the γ\gamma-ray and optical bands, and present a homogeneous time analysis of the light curves of PKS2155-304, PG1553+113, and BL Lac. Based on results from a survey covering the entire Fermi γ\gamma-ray sky we have estimated the fraction of possible quasi-periodic BL Lac objects. We compared the cyclical behaviour in BL Lac objects with that derived from the search of possible optical periodicities in quasars, and find that at z\lesssim1 the cosmic density of quasi-periodic BL Lac objects is larger than that of quasi-periodic quasars. If the BL Lac quasi-periodicities were due to a supermassive binary black hole (SBBH) scenario, there could be a tension with the upper limits on the gravitational wave background measured by the pulsar timing array. The argument clearly indicates the difficulties of generally associating quasi-periodicities of BL Lac objects with SBBHs.Comment: In publication on A&A, 6 pages, 4 figure (11 plots). Minor corrections adde

    MAGIC eyes to the extreme: testing the blazar emission models on EHBLs

    Get PDF
    Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose synchrotron emission peaks at exceptionally high energies, above few keV, in the hard X-ray regime. So far, only a handful of those objects has been detected at very high energy (VHE, E > 100 GeV) gamma rays by Imaging Atmospheric Cherenkov Telescopes. Very remarkably, VHE observations of some of these blazars (like 1ES 0229+200) have provided evidence of a VHE gamma-ray emission extending to several TeV, which is difficult to explain with standard, one-zone synchrotron self-Compton models usually applied to BL Lac objects. The MAGIC collaboration coordinated a multi-year, multi-wavelength observational campaign on ten targets. The MAGIC telescopes detected VHE gamma rays from four EHBLs. In this paper we focus on the source 1ES 1426+426 and its X-ray and VHE gamma-ray properties. The results of different models (synchrotron self-Compton, spine-layer, hadronic) reproducing the broadband spectral energy distribution are also presented.Comment: Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), July 24th-August 1st, 2019. Madison, WI, U.S.

    A significant hardening and rising shape detected in the MeV/GeV nuFnu spectrum from the recently-discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    Get PDF
    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE, E>E> 100 GeV) blazar S4 0954+65 (z=0.368z=0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February, 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ\gamma-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8±0.11.8 \pm 0.1---compared with the 3FGL value (averaged over four years of observation) of 2.34±0.042.34 \pm 0.04. In contrast, Swift/XRT data showed a softening of the X-ray spectrum, with a photon index of 1.72±0.081.72 \pm 0.08 (compared with 1.38±0.031.38 \pm 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1<1 day) broadband spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of 1.0×106\gtrsim 1.0 \times 10^{-6} photons cm2^{-2} s1^{-1} (E>E> 100 MeV) and a hard spectral index of ΓGeV<2.0\Gamma_{\rm GeV} < 2.0 detected by Fermi-LAT on daily time scales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.Comment: 15 pages, 3 figures, 2 tables. Accepted by PAS

    Flat Spectrum Radio Quasars through the MAGIC glasses

    Get PDF
    The detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E > 100 GeV) range is challenging, mainly because of their steep spectra in this energy band. Up to now, only five FSRQs are known to be VHE γ-ray emitters, all of them have been detected by the MAGIC telescopes, that discovered four of them in the VHE band. The observations in the VHE band are crucial to understand their emission, specially to constrain the location of the emitting region within the jet due to the absorption from their broad line region (BLR). Typically, FSRQs are detected during high flux states, enhancing the probability of detection with the current instruments sensitivities. However, the last observation campaigns performed with the MAGIC telescopes show emission during moderate states, thus challenging our understanding of the emission mechanisms in FSRQs. In this contribution, we give an overview and present the most recent results of the three FSRQs 3C279, PKS1222+21 and PKS1510-089 in a multi-wavelength context with special focus on MAGIC and Fermi-LAT simultaneous observations

    35th International Cosmic Ray Conference, ICRC 2017

    Get PDF
    The extragalactic background light (EBL) is the radiation accumulated through the history of the Universe in the wavelength range from the ultraviolet to the far infrared. Local foregrounds make the direct measurement of the diffuse EBL notoriously difficult, while robust lower limits have been obtained by adding up the contributions of all the discrete sources resolved in deep infrared and optical galaxy observations. Gamma-ray astronomy has emerged in the past few years as a powerful tool for the study of the EBL: very-high-energy (VHE) photons traversing cosmological distances can interact with EBL photons to produce e+e- pairs, resulting in an energy-dependent depletion of the gamma-ray flux of distant sources that can be used to set constraints on the EBL density. The study of the EBL is one of the key scientific programs currently carried out by the MAGIC collaboration. We present here the results of the analysis of 32 VHE spectra of 12 blazars in the redshift range 0.03-0.94, obtained with over 300 hours of observations with the MAGIC telescopes between 2010 and 2016. A combined likelihood maximization approach is used to evaluate the density and spectrum of the EBL most consistent with the MAGIC observations. The results are compatible with state-of-the-art EBL models, and constrain the EBL density to be within ≈ 20% the nominal value in such models. The study reveals no anomalies in gamma-ray propagation in the large optical depth regime - contrary to some claims based on meta-analyses of published VHE spectra.</p

    Flat Spectrum Radio Quasars through the MAGIC glasses

    Get PDF
    The detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E > 100 GeV) range is challenging, mainly because of their steep spectra in this energy band. Up to now, only five FSRQs are known to be VHE γ-ray emitters, all of them have been detected by the MAGIC telescopes, that discovered four of them in the VHE band. The observations in the VHE band are crucial to understand their emission, specially to constrain the location of the emitting region within the jet due to the absorption from their broad line region (BLR). Typically, FSRQs are detected during high flux states, enhancing the probability of detection with the current instruments sensitivities. However, the last observation campaigns performed with the MAGIC telescopes show emission during moderate states, thus challenging our understanding of the emission mechanisms in FSRQs. In this contribution, we give an overview and present the most recent results of the three FSRQs 3C279, PKS1222+21 and PKS1510-089 in a multi-wavelength context with special focus on MAGIC and Fermi-LAT simultaneous observations

    The 34th International Cosmic Ray Conference

    Get PDF
    &nbsp;The detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E&gt;100 GeV) range is challenging, mainly because of their steep spectra in this energy band. Up to now, only five FSRQs are known to be VHE &gamma;-ray emitters, all of them have been detected by the MAGIC telescopes, that discovered four of them in the VHE band. The observations in the VHE band are crucial to understand their emission, specially to constrain the location of the emitting region within the jet due to the absorption from their broad line region (BLR). Typically, FS- RQs are detected during high flux states, enhancing the probability of detection with the current instruments sensitivities. However, the last observation campaigns performed with the MAGIC telescopes show emission during moderate states, thus challenging our understanding of the emis- sion mechanisms in FSRQs. In this contribution, we give an overview and present the most recent results of the three FSRQs 3C279, PKS1222+21 and PKS1510-089 in a multi-wavelength context with special focus on MAGIC and Fermi-LAT simultaneous observations.</div
    corecore