146 research outputs found
Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors
We present our current progress on the design and test of Ti/TiN Multilayer
for use in Kinetic Inductance Detectors (KIDs). Sensors based on
sub-stoichiometric TiN film are commonly used in several applications. However,
it is difficult to control the targeted critical temperature , to maintain
precise control of the nitrogen incorporation process and to obtain a
production uniformity. To avoid these problems we investigated multilayer
Ti/TiN films that show a high uniformity coupled with high quality factor,
kinetic inductance and inertness of TiN. These features are ideal to realize
superconductive microresonator detectors for astronomical instruments
application but also for the field of neutrino physics. Using pure Ti and
stoichiometric TiN, we developed and tested different multilayer configuration,
in term of number of Ti/TiN layers and in term of different interlayer
thicknesses. The target was to reach a critical temperature around
K in order to have a low energy gap and slower recombination time
(i.e. low generation-recombination noise). The results prove that the
superconductive transition can be tuned in the K temperature
range properly choosing the Ti thickness in the nm range, and the
TiN thickness in the nm rang
Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework
The European Research Council has recently funded HOLMES, a project with the
aim of performing a calorimetric measurement of the electron neutrino mass
measuring the energy released in the electron capture decay of 163Ho. The
baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors
(TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A
promising alternative solution is based on superconducting microwave
resonators, that have undergone rapid development in the last decade. These
detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are
inherently multiplexed in the frequency domain and suitable for even
larger-scale pixel arrays, with theoretical high energy resolution and fast
response. The aim of our activity is to develop arrays of microresonator
detectors for X-ray spectroscopy and suitable for the calorimetric measurement
of the energy spectra of 163Ho. Superconductive multilayer films composed by a
sequence of pure Titanium and stoichiometric TiN layers show many ideal
properties for MKIDs, such as low loss, large sheet resistance, large kinetic
inductance, and tunable critical temperature . We developed Ti/TiN
multilayer microresonators with within the range from 70 mK to 4.5 K and
with good uniformity. In this contribution we present the design solutions
adopted, the fabrication processes and the characterization results
Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature
We apply a feedback cooling technique to simultaneously cool the three
electromechanical normal modes of the ton-scale resonant-bar gravitational wave
detector AURIGA. The measuring system is based on a dc Superconducting Quantum
Interference Device (SQUID) amplifier, and the feedback cooling is applied
electronically to the input circuit of the SQUID. Starting from a bath
temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the
coolest normal mode. The same technique, implemented in a dedicated experiment
at subkelvin bath temperature and with a quantum limited SQUID, could allow to
approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure
Axion search with a quantum-limited ferromagnetic haloscope
A ferromagnetic axion haloscope searches for Dark Matter in the form of
axions by exploiting their interaction with electronic spins. It is composed of
an axion-to-electromagnetic field transducer coupled to a sensitive rf
detector. The former is a photon-magnon hybrid system, and the latter is based
on a quantum-limited Josephson parametric amplifier. The hybrid system consists
of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by
means of a static magnetic field. Our setup is the most sensitive rf
spin-magnetometer ever realized. The minimum detectable field is
T with 9 h integration time, corresponding to a limit on
the axion-electron coupling constant at 95% CL.
The scientific run of our haloscope resulted in the best limit on DM-axions to
electron coupling constant in a frequency span of about 120 MHz, corresponding
to the axion mass range -eV. This is also the first apparatus
to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure
Searching for galactic axions through magnetized media: QUAX status report
The current status of the QUAX R\&D program is presented. QUAX is a
feasibility study for a detection of axion as dark matter based on the coupling
to the electrons. The relevant signal is a magnetization change of a magnetic
material placed inside a resonant microwave cavity and polarized with a static
magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs,
Thessaloniki, May 15 to 19, 201
Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers
Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-
Q
cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out
Testing of optimal filters for gravitational wave signals: An experimental implementation
We have implemented likelihood testing of the performance of an optimal filter within the online analysis of AURIGA, a sub-Kelvin resonant-bar gravitational wave detector. We demonstrate the effectiveness of this technique in discriminating between impulsive mechanical excitations of the resonant-bar and other spurious excitations. This technique also ensures the accuracy of the estimated parameters such as the signal-to-noise ratio. The efficiency of the technique to deal with non-stationary noise and its application to data from a network of detectors are also discussed
Correlation between Gamma-Ray bursts and Gravitational Waves
The cosmological origin of -ray bursts (GRBs) is now commonly
accepted and, according to several models for the central engine, GRB sources
should also emit at the same time gravitational waves bursts (GWBs). We have
performed two correlation searches between the data of the resonant
gravitational wave detector AURIGA and GRB arrival times collected in the BATSE
4B catalog. No correlation was found and an upper limit \bbox{} on the averaged amplitude of gravitational waves
associated with -ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
- …