109 research outputs found
Structural characterization of biocompatible reverse micelles using Small-Angle X-ray Scattering, 31P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy
The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri-n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ceolín, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
Amphiphilic ionic liquids as sustainable components to formulate promising vesicles to be used in nanomedicine
Ionic Liquids (ILs) are an interesting category of compounds particularly because of the possibility to easily synthesize them with different attractive properties, in the lab. The interest for ILs with amphiphilic character (IL-like surfactants) has been growing up because of versatility in creating useful supramolecular assemblies. In this short review, the current state of IL-like surfactants to prepare vesicles in water is described. Particularly, the focus has been put on the experiments performed by South American researchers using protic and aprotic surfactants. Finally, it summarizes some preliminary results obtained in our lab about the application in nanomedicine that these novel vesicles can offer.Fil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentin
Characterization of anionic reverse micelles formulated on biobased solvents as replacing conventional nonpolar organic solvents
Two reverse micelles (RMs) employing 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and two biobased solvents, p-cymene (p-cym) or limonene (lim), have been formulated with the aim to obtain systems more environmentally friendly. Both RMs were studied by using different techniques such as dynamic light scattering (DLS) and 1H NMR. Additionally, spectroscopy techniques were used to obtain information such as critical micellar concentration and aggregation number of the system investigated. Our results show that both biobased solvents can be used to generate AOT RMs. Interestingly, even the maximum amount of water dispersed are similar for both RMs, and the sizes of the systems are not identical, being that the RMs are formulated in lim larger than in p-cym. Both the biobased solvent and RMs show interaction of the entrapped water and the interface; however, this interaction is different depending on the solvent employed to prepare the RMs. Thus, the interaction water-surfactant at the interface is weaker in p-cym/AOT than in lim/AOT RMs. We think that the different penetration of the external solvent to the interfacial region is the main reason for the facts observed. In this sense, the polarity of these biobased solvents could explain why the penetration of both biobased solvents is different, making the p-cym/AOT RMs less interactive and, therefore, with smaller droplets sizes values. In summary, the different capacities of these biobased solvents to penetrate into the AOT interface allow us to obtain a new interface with peculiar characteristics and therefore with diverse applications.Fil: Oyarzun, Mauricio. Pontificia Universidad Católica de Chile; ChileFil: Oliva, Guillermo. Pontificia Universidad Católica de Chile; ChileFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Pavez, Paulina. Pontificia Universidad Católica de Chile; Chil
On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles: The effect of the polar solvent
The behavior of two polar solvents, ethylene glycol (EG) and dimethylformamide (DMF), entrapped in sodium bis-(2-ethylhexyl) phosphate (NaDEHP)/n-heptane reverse micelles (RMs) was investigated using dynamic light scattering (DLS), molecular probe absorption and FT-IR spectroscopy. DLS results reveal the formation of RMs containing EG and DMF as a polar component. To the best of our knowledge this is the first report where both polar solvents are entrapped by the NaDEHP surfactant to effectively create RMs. We use the solvatochromism behavior of the molecular probe, 1-methyl-8-oxyquinolinum betaine (QB), and FT-IR spectroscopy to investigate the physicochemical properties of the non-aqueous RMs. Our results demonstrate that the NaDEHP surfactant interacts through hydrogen bonds with EG at the EG/NaDEHP interface and this interaction is responsible for destroying the bulk structure of pure solvent EG when entrapped in NaDEHP RMs. On the other hand, when DMF is incorporated inside the RMs the bulk structure of DMF is destroyed upon encapsulation by the Na-DMF interaction at the DMF/NaDEHP interface. Our results are completely different than the one observed for DMF/n-heptane/AOT. Our results show how the physicochemical properties, such as micropolarity, microviscosity and hydrogen bond interaction, of nonaqueous NaDEHP/n-heptane RMs interfaces can be dramatically changed by simply using different non-aqueous polar solvents. Thus, these results can be very useful to employ these novel RMs as nanoreactors since the dimensions of the RMs are around 10 to 20 nm.Fil: Quintana Lazópulos, Silvina Soledad. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chessa, Juana Josefa. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moyano, Fernando. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Production of Pd nanoparticles in microemulsions: Effect of reaction rates on the particle size
In the synthesis of metallic nanoparticles in microemulsions, we hypothesized that the particle size is controlled by the reaction rate and not by the microemulsion size. Thus, the changes observed in the particle sizes as reaction conditions, such as concentrations, temperatures, the type of surfactant used, etc., are varied which should not be correlated directly to the modification of these conditions but indirectly to the changes they produce in the reaction rates. In this work, the microemulsions were formulated with benzene and water as continuous and dispersed phases, respectively, using n-dodecyltrimethylammonium bromide (DTAB) and n-octanol as the surfactant and cosurfactant. Using time-resolved UV-vis spectroscopy, we measured the reaction rates in the production of palladium (Pd) nanoparticles inside the microemulsions at different reactant concentrations and temperatures, keeping all the other parameters constant. The measured reaction rates were then correlated with the particle sizes measured by transmission electron microscopy (TEM). We found that the nanoparticle size increases linearly as the reaction rate increases, independently of the actual reactant concentration or temperature. We proposed a simple model for the observed kinetics where the reaction rate is controlled mainly by the diffusion of the reducing agent. With this model, we predicted that the particle size should depend indirectly, via the reaction kinetics, on the micelle radius, the water volume and the total microemulsion volume. Some of these predictions were indeed observed and reported in the literature.Fil: Sánchez Morales, Jhon Freddy. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Sanchez, Miguel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Ritacco, Hernán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin
Characterization of reverse micelles formulated with the ionic-liquid-like surfactant Bmim-AOT and comparison with the traditional Na-AOT: Dynamic light scattering, 1H NMR spectroscopy, and hydrolysis reaction of carbonate as a probe
The present study investigated how the presence of butylmethylimidazolium cation (bmim+) alters the interfacial properties of reverse micelles (RMs) created with the ionic liquid-like surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT), in comparison to sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT) RMs, employing dynamic light scattering (DLS) and 1H NMR techniques. Moreover, through the hydrolysis reaction of bis(4-nitrophenyl)carbonate inside both RMs as reaction probe, interfacial properties changes were explored in more detail. The kinetic solvent isotope effect was also analyzed. Micellar systems were formed using n-heptane as external nonpolar solvent and water as the polar component. According to the DLS studies, water is encapsulated inside the organized media; however, a different tendency is observed depending on the cationic component of the surfactant. For Na-AOT system, the results suggest that the micellar shapes are probably spherical, while in the case of bmim-AOT, a transition from ellipsoidal to spherical micelles could be occurring when water is added. 1H NMR data show that water is structured differently when Na+ cation is replaced by bmim+ in bmim-AOT RMs, the interaction of water with the surfactant is weaker and the water hydrogen-bonding network is less disturbed than in Na-AOT RMs. Kinetic studies reveal that the hydrolysis reaction in bmim-AOT RMs was much more favorable in comparison to Na-AOT RMs. In addition, when water content decreases in bmim-AOT RMs, the hydrolysis reaction rate increases and the solvent isotope effect remains constant, while for Na-AOT solutions, both the reaction rate and the solvent isotope effect decrease. Our results indicate that bmim+ cation would be located in the surfactant layer in such a way the negative charge density in the interface is less than that in Na-AOT RMs, and the reaction is more favorable. Additionally, as 1H NMR studies reveal, the interfacial water molecules would be more available in bmim-AOT RMs to participate in the nucleophilic attack. Therefore, the present study evidences how the replacement of Na+ counterion by bmim+ alters the composition of the interface of AOT RMs.Fil: Dib, Nahir. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Acuña, Angel. Universidad de Santiago de Compostela; EspañaFil: García-Río, Luis. Universidad de Santiago de Compostela; Españ
The Effect of Different Interfaces and Confinement on the Structure of the Ionic Liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide Entrapped in Cationic and Anionic Reverse Micelles.
The behavior of the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf 2N]) entrapped in two reverse micelles (RMs) formed in an aromatic solvent as dispersant pseudophase: [bmim][Tf 2N]/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/chlorobenzene and [bmim][Tf 2N]/sodium 1,4-bis-2- ethylhexylsulfosuccinate (AOT)/chlorobenzene, was investigated using dynamic light scattering (DLS), FT-IR and 1H NMR spectroscopies. DLS results reveal the formation of RMs containing [bmim][Tf 2N] as a polar component since the droplet size values increase as the W s (W s = [[bmim][Tf 2N]]/[surfactant]) increases. Furthermore, it shows that the RMs consist of discrete spherical and non-interacting droplets of [bmim][Tf 2N] stabilized by the surfactants. Important differences in the structure of [bmim][Tf 2N] entrapped inside BHDC RMs, in comparison with the neat IL, are observed from the FT-IR and 1H NMR measurements. The electrostatic interactions between anions and cations from [bmim][Tf 2N] and BHDC determine the solvent structure encapsulated inside the nano-droplets. It seems that the IL structure is disrupted due to the electrostatic interaction between the [Tf 2N] - and the cationic BHDC polar head (BHD +) giving a high ion pair degree between BHD + and [Tf 2N] - at a low IL content. On the other hand, for the AOT RMs there is no evidence of strong IL-surfactant interaction. The electrostatic interaction between the SO 3 - group and the Na + counterion in AOT seems to be stronger than the possible [bmim] +-SO 3 - interaction at the interface. Thus, the structure of [bmim][Tf 2N] encapsulated is not particularly disrupted by the anionic surfactant at all W s studied, in contrast to the BHDC RM results. Nevertheless, there is evidence of confinement in the AOT RMs because the [bmim] +-[Tf 2N] - interaction is stronger than in bulk solution. Thus, the IL is more associated upon confinement. Our results reveal that the [bmim][Tf 2N] structure can be modified in a different manner inside RMs by varying the kind of surfactant used to create the RMs and the IL content (W s). These facts can be very important if these media are used as nanoreactors because unique microenvironments can be easily created by simply changing the RM components and W s.Fil: Ferreyra, Darío David. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
Catanionic reverse micelles as an optimal microenvironment to alter the water electron donor capacity in a SN2 reaction
The effect of interfacial water entrapped in two types of catanionic reverse micelles (RMs) on the kinetic parameters of the SN2 reaction between dimethyl-4-nitrophenylsulfonium trifluoromethanesulfonate (S+) and n-butylamine (BuNH2) was explored. Two catanionic surfactants, composed of a mixture of oppositely charged ionic surfactants without their original counterions, were used to create the RMs. Thus, benzyl-n-hexadecyldimethylammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (BHD-AOT) and cetyltrimethylammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (CTA-AOT) were formed. Also, the well-known anionic surfactant sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (Na-AOT) was employed as a comparison. Our results showed an important catalytic-like effect of all RMs investigated in comparison with a water-benzene mixture, and the rate constant values depend on the type of surfactant used. Faster reaction in BHD-AOT RMs than in CTA-AOT and Na-AOT RMs was observed. This behavior was attributed to the strong interaction (by hydrogen bonding with AOT anion and ion-dipole interaction with BHD+) between the entrapped water and the BHD-AOT interface, which reduces the solvation capacity of water on S+. In CTA-AOT (and Na-AOT) RMs, the water-interface interaction is weaker and the electron pairs of water can solvate S+ ions. In summary, the chemical structure of the counterion on the catanionic surfactant alters the interfacial region, allowing the progress of a reaction inside the RMs to be controlled. ©Fil: Villa, Cristian C.. Universidad del Quindio; ColombiaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentin
Solvent blends can control cationic reversed micellar interdroplet interactions. the effect of n- heptane:Benzene mixture on BHDC reversed micellar interfacial properties: Droplet sizes and micropolarity
We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X Hp) investigated, that is, XHp = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (dApp) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.Fil: Agazzi, Federico Martin. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
Choline [amino acid] ionic liquid/water mixtures: A triple effect for the degradation of an organophosphorus pesticide
A series of ionic liquids (ILs) composed by choline (Ch) as a cation and different amino acids (AA) as anions and their respective aqueous mixtures were prepared using different [Ch][AA] contents in a range of 0.4-46 mol % IL. These solvents were used for the first time to achieve an eco-friendlier Paraoxon degradation. The results show that [Ch][AA]/water mixtures are an effective reaction medium to degrade Paraoxon, even when the IL content in the mixture is low (0.4 mol % IL) and without the need of an extra nucleophile. Both the kinetics and the degradation pathways of pesticides depend on the nature of the AA on [Ch][AA] and the amount of an IL present in the mixture. We have demonstrated that in those mixtures with a low amount of [Ch][AA], the hydrolysis reaction is the main pathway for Paraoxon degradation, showing a catalytic effect of the IL. However, as the percentage of [Ch][AA] increases in the mixture, the nucleophilic attack of [Ch][AA] is evident. Finally, the aim of this study was to provide evidence of a promising and biocompatible methodology to degrade a toxic compound (Paraoxon) using a minimal quantity of an IL designed totally from natural resources.Fil: Pavez, Paulina. Universidad Católica de Chile; ChileFil: Figueroa, Roberto. Universidad Católica de Chile; ChileFil: Medina, Mayte. Universidad Católica de Chile; ChileFil: Millán, Daniela Andrea. Universidad Bernardo O’Higgins. Centro Integrativo de Biología y Química Aplicada; ChileFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Tapia, Ricardo. Universidad Católica de Chile; Chil
- …