1,181 research outputs found
3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory
An effective field theory for matter coupled to three-dimensional quantum
gravity was recently derived in the context of spinfoam models in
hep-th/0512113. In this paper, we show how this relates to group field theories
and generalized matrix models. In the first part, we realize that the effective
field theory can be recasted as a matrix model where couplings between matrices
of different sizes can occur. In a second part, we provide a family of
classical solutions to the three-dimensional group field theory. By studying
perturbations around these solutions, we generate the dynamics of the effective
field theory. We identify a particular case which leads to the action of
hep-th/0512113 for a massive field living in a flat non-commutative space-time.
The most general solutions lead to field theories with non-linear redefinitions
of the momentum which we propose to interpret as living on curved space-times.
We conclude by discussing the possible extension to four-dimensional spinfoam
models.Comment: 17 pages, revtex4, 1 figur
Euclidean three-point function in loop and perturbative gravity
We compute the leading order of the three-point function in loop quantum
gravity, using the vertex expansion of the Euclidean version of the new spin
foam dynamics, in the region of gamma<1. We find results consistent with Regge
calculus in the limit gamma->0 and j->infinity. We also compute the tree-level
three-point function of perturbative quantum general relativity in position
space, and discuss the possibility of directly comparing the two results.Comment: 16 page
Coupling gauge theory to spinfoam 3d quantum gravity
We construct a spinfoam model for Yang-Mills theory coupled to quantum
gravity in three dimensional riemannian spacetime. We define the partition
function of the coupled system as a power series in g_0^2 G that can be
evaluated order by order using grasping rules and the recoupling theory. With
respect to previous attempts in the literature, this model assigns the
dynamical variables of gravity and Yang-Mills theory to the same simplices of
the spinfoam, and it thus provides transition amplitudes for the spin network
states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly
that the partition function has a semiclassical limit given by the Regge
discretization of the classical Yang-Mills action.Comment: 18 page
Observables in 3d spinfoam quantum gravity with fermions
We study expectation values of observables in three-dimensional spinfoam
quantum gravity coupled to Dirac fermions. We revisit the model introduced by
one of the authors and extend it to the case of massless fermionic fields. We
introduce observables, analyse their symmetries and the corresponding proper
gauge fixing. The Berezin integral over the fermionic fields is performed and
the fermionic observables are expanded in open paths and closed loops
associated to pure quantum gravity observables. We obtain the vertex amplitudes
for gauge-invariant observables, while the expectation values of gauge-variant
observables, such as the fermion propagator, are given by the evaluation of
particular spin networks.Comment: 32 pages, many diagrams, uses psfrag
Spin foams with timelike surfaces
Spin foams of 4d gravity were recently extended from complexes with purely
spacelike surfaces to complexes that also contain timelike surfaces. In this
article, we express the associated partition function in terms of vertex
amplitudes and integrals over coherent states. The coherent states are
characterized by unit 3--vectors which represent normals to surfaces and lie
either in the 2--sphere or the 2d hyperboloids. In the case of timelike
surfaces, a new type of coherent state is used and the associated completeness
relation is derived. It is also shown that the quantum simplicity constraints
can be deduced by three different methods: by weak imposition of the
constraints, by restriction of coherent state bases and by the master
constraint.Comment: 22 pages, no figures; v2: remarks on operator formalism added in
discussion; correction: the spin 1/2 irrep of the discrete series does not
appear in the Plancherel decompositio
Lorentzian spin foam amplitudes: graphical calculus and asymptotics
The amplitude for the 4-simplex in a spin foam model for quantum gravity is
defined using a graphical calculus for the unitary representations of the
Lorentz group. The asymptotics of this amplitude are studied in the limit when
the representation parameters are large, for various cases of boundary data. It
is shown that for boundary data corresponding to a Lorentzian simplex, the
asymptotic formula has two terms, with phase plus or minus the Lorentzian
signature Regge action for the 4-simplex geometry, multiplied by an Immirzi
parameter. Other cases of boundary data are also considered, including a
surprising contribution from Euclidean signature metrics.Comment: 30 pages. v2: references now appear. v3: presentation greatly
improved (particularly diagrammatic calculus). Definition of "Regge state"
now the same as in previous work; signs change in final formula as a result.
v4: two references adde
A new look at loop quantum gravity
I describe a possible perspective on the current state of loop quantum
gravity, at the light of the developments of the last years. I point out that a
theory is now available, having a well-defined background-independent
kinematics and a dynamics allowing transition amplitudes to be computed
explicitly in different regimes. I underline the fact that the dynamics can be
given in terms of a simple vertex function, largely determined by locality,
diffeomorphism invariance and local Lorentz invariance. I emphasize the
importance of approximations. I list open problems.Comment: 15 pages, 5 figure
Limit on the mass of a long-lived or stable gluino
We reinterpret the generic CDF charged massive particle limit to obtain a
limit on the mass of a stable or long-lived gluino. Various sources of
uncertainty are examined. The -hadron spectrum and scattering cross sections
are modeled based on known low-energy hadron physics and the resultant
uncertainties are quantified and found to be small compared to uncertainties
from the scale dependence of the NLO pQCD production cross sections. The
largest uncertainty in the limit comes from the unknown squark mass: when the
squark -- gluino mass splitting is small, we obtain a gluino mass limit of 407
GeV, while in the limit of heavy squarks the gluino mass limit is 397 GeV. For
arbitrary (degenerate) squark masses, we obtain a lower limit of 322 GeV on the
gluino mass. These limits apply for any gluino lifetime longer than
ns, and are the most stringent limits for such a long-lived or stable gluino.Comment: 15 pages, 5 figures, accepted for publication in JHE
Grasping rules and semiclassical limit of the geometry in the Ponzano-Regge model
We show how the expectation values of geometrical quantities in 3d quantum
gravity can be explicitly computed using grasping rules. We compute the volume
of a labelled tetrahedron using the triple grasping. We show that the large
spin expansion of this value is dominated by the classical expression, and we
study the next to leading order quantum corrections.Comment: 18 pages, 1 figur
Expansion history and f(R) modified gravity
We attempt to fit cosmological data using modified Lagrangians
containing inverse powers of the Ricci scalar varied with respect to the
metric. While we can fit the supernova data well, we confirm the behaviour at medium to high redshifts reported elsewhere and argue
that the easiest way to show that this class of models are inconsistent with
the data is by considering the thickness of the last scattering surface. For
the best fit parameters to the supernova data, the simplest 1/R model gives
rise to a last scattering surface of thickness , inconsistent
with observations.Comment: accepted in JCAP, presentation clarified, results and conclusions
unchange
- …